首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征   总被引:24,自引:3,他引:24  
岳广阳  张铜会  赵哈  林牛丽  刘新平  黄刚 《生态学报》2006,26(10):3205-3213
利用Dynamax茎流测量系统、Li-6400光合作用仪和自动气象站分别对科尔沁沙地两种灌木树种黄柳和小叶锦鸡儿的液流变化、蒸腾速率及其周围的环境因子进行检测.研究结果表明:(1)黄柳、小叶锦鸡儿茎干液流通量密度日变化趋势基本相同,呈多峰曲线;液流启动时间分别为4:30、5:30,在13:00左右到达各自液流峰值,峰值大小为81.2~91.7mg/h、17.3~27.1mg/h,20:30降为最低,晚间均具有明显的液流活动现象.(2)灌木的茎流日变化曲线与蒸腾速率日变化曲线并不吻合,实验测得的叶片蒸腾速率不能同步反映茎干液流的动态变化特征;黄柳的叶片蒸腾速率和单枝蒸腾耗水量均大于小叶锦鸡儿,耐旱性相对较低.(3)黄柳、小叶锦鸡儿白天液流通量密度变化趋势与环境因子变化趋势相吻合.相关性分析表明,影响灌木液流变化的主要因子依次是太阳有效辐射、相对湿度、大气温度、风速、10cm和20cm土壤温度.  相似文献   

2.
大气CO_2浓度倍增对水稻光合速率和Rubisco的影响   总被引:3,自引:0,他引:3  
有关植物对环境COZ浓度渐增反应的早期研究,主要集中在生物量和光合速率方面(lhaner1981)。不同植物对COZ浓度增加的短期响应和长期适应的差异很大,有时甚至完全相反。为了研究植物对大气Co浓度增加的响应的机理,现在不少学者已把注意力转移到研究光合碳代谢关键酶Rubisco上(S8g6等1990,Cforll1988)。水稻是一种重要的粮食作物,然而这方面的研究不多(Bater等1990),高浓度COZ对水稻Rubisco的含量、活性以及InRNA量之间的相互关系尚未见有报道。本文研究了在130Mm-‘s‘光强下大气COZ浓度倍增对水稻的生物量、光合速率…  相似文献   

3.
岩黄连光合与蒸腾特性及其对光照强度和CO2浓度的响应   总被引:15,自引:2,他引:15  
采用LI-6400便携式光合测定系统(Li-CorInc.,USA)对岩黄连叶片的气体交换进行了测定。结果表明(1)岩黄连叶片的光饱和点(LSP)为329.18μmol.m-2.s-1左右,光补偿点(LCP)为12.76μmol.m-2.s-1,最大净光合速率为2.96μmol.m-2.s-1,暗呼吸速率(Rd)为0.17μmol.m-2.s-1。光饱和点和光补偿点都比效低,表明岩黄连对光照的要求不高,属于阴生植物。(2)4月份,岩黄连Pn随CO2浓度升高而逐渐增大。当CO2浓度由50μmol.mol-1增加到600μmol.mol-1,Pn几乎呈直线上升,600~1000μmol.mol-1范围内逐渐缓和,到1000μmol.mol-1以后Pn变化平稳。由曲线估算CO2饱和点(CSP)大约在1000μmol.mol-1左右。CO2的补偿点为68.80μmol.mol-1。羧化效率为0.0308μmol.m-2.s-1。(3)岩黄连叶片水分利用率(WUE)随有效光辐射强度(PAR)的增强呈抛物线状变化,PAR在200μmol.m-2.s-1内呈直线上升,到200μmol.m-2.s-1时WUE达最大值,大于200μmol.m-2.s-1后WUE呈逐渐下降趋势。  相似文献   

4.
为了探讨光照强度和CO_2浓度对蛋白核小球藻(Chlorella pyrenoidosa)生长、无机碳利用的复合效应,丰富绿藻中无机碳浓缩机制的资料,该文设置两种光照强度(40和120μmol photons×m–2×s–1)和两种CO_2浓度(0.04%和0.16%)组合成4种条件,比较了蛋白核小球藻生长、无机碳浓度、pH补偿点、光合放氧速率、碳酸酐酶(CA)活性和α-CA基因转录表达对这4种培养条件的响应。结果发现:蛋白核小球藻在高光强高CO_2浓度组生长最快;低光强高CO_2浓度组培养体系中总无机碳浓度为1 163.3μmol×L–1,显著高于其他3组;高光强低CO_2浓度组藻的p H补偿点最高(9.8),而低光强高CO_2浓度组藻的p H补偿点最低(8.6);低光强高CO_2浓度组藻的最大光合速率(Vmax)和最大光合速率一半时的无机碳浓度(K0.5)最高,分别是其他3组的1.28-1.91倍和1.61-2.00倍;高光强低CO_2浓度组藻的胞外CA活性最高;而低光强低CO_2浓度组藻的胞外α-CA基因表达量显著高于其他3组。以上结果表明低CO_2浓度可促进蛋白核小球藻的pH补偿点和无机碳亲和力的提高,诱导胞外CA活性及α-CA基因的表达;该藻主要以HCO_3~–为无机碳源,其对无机碳的利用受光照的调节。  相似文献   

5.
以日光温室黄瓜品种津优一号和露地品种津研四号为试材,在人工气候室内测定了特定环境条件(CO2浓度、光照强度和温度等)下的黄瓜单叶净光合速率(Pn),结合数学方法,建立了模拟黄瓜单叶Pn(y)对CO2浓度(x1)、光照强度(x2)和温度(x3)3因子响应的数学模型: 津优一号y=exp(-242.1217/x1)[61.0202-0.11(x2-30.926)2]exp(-272.8874/x3)+0.9355;津研四号y=exp(-179.8803/x1)[50.0771-0.0609(x2-34.3455)2]exp(-267.9653/x3)+0.7377.由模型可知,Pn对温度的响应为二次曲线,对CO2浓度和光照强度的响应为指数函数.  相似文献   

6.
小叶锦鸡儿和狭叶锦鸡儿的光合特性及保护酶系统比较   总被引:10,自引:3,他引:10  
对锦鸡儿属羽状叶类群的代表植物--小叶锦鸡儿(Carag ana microphylla)和假掌状叶类群的代表植物--狭叶锦鸡儿(Caragana stenophyll a)的光合特性和保护酶系统进行了比较研究.小叶锦鸡儿的光补偿点(217 μmol photo n/(m2·s))、光饱和点(1107μmol photon/(m2·s))、光合最适温度(25.65℃) 均低于狭叶锦鸡儿(光补偿点,342μmol photon/(m2·s);光饱和点,1444μmol phot on/(m2·s);光合最适温度,32.89℃),前者在低温、低光强下表现出更高的光合速率 .小叶锦鸡儿净光合速率表现出随空气相对湿度增大而升高趋势,而狭叶锦鸡儿则在空气相对湿度为80%~90%时,净光合速率达到最大.这说明狭叶锦鸡儿光合系统对强辐射、高温和干旱环境的适应能力大于小叶锦鸡儿,小叶锦鸡儿对低辐射的利用能力高于狭叶锦鸡儿.狭叶锦鸡儿净光合速率和光能利用效率日进程午后高于小叶锦鸡儿,表明狭叶锦鸡儿的保水能力好于小叶锦鸡儿.小叶锦鸡儿LUE日平均值(8.17mmolCO2/mol photon)大于狭叶锦鸡儿(7.08 mmolCO2/mol photon),表明小叶锦鸡儿对低光强环境适应能力强.这些光合特性正好与它们分布区的光、温、湿条件相适应.从光合特性来看,狭叶锦鸡儿比小叶锦鸡儿更适于在光辐射充足、气温较高、降水更少的环境下生长.狭叶锦鸡儿有较高的POD和S OD活性,导致其自由基含量、MDA含量和细胞膜相对透性小于小叶锦鸡儿,这是狭叶锦鸡儿适应其干旱、高温、强辐射环境的重要特性.狭叶锦鸡儿叶细胞游离脯氨酸含量小于小叶锦鸡儿,也说明狭叶锦鸡儿对干旱的适应性强.结果表明(1)锦鸡儿属植物是以光合特性和抗氧化系统的变异来适应它们的光、温、湿环境的.(2)假掌状叶的代表植物--狭叶锦鸡儿比羽状叶的代表植物--小叶锦鸡儿对干旱、高温、强辐射的适应性强.这一研究结果似可以作为羽状叶是原始类群、假掌状叶是较进化类群观点的证据.  相似文献   

7.
小叶锦鸡儿灌丛下土壤水分对降雨的响应   总被引:1,自引:0,他引:1  
以科尔沁沙地主要固沙灌木小叶锦鸡儿为研究对象,在其生长季次降雨21.5 mm后180 h内,利用TDR和微渗仪测量小叶锦鸡儿灌丛下不同部位的土壤含水量和土壤蒸发,并计算该灌丛下不同部位储水量和水量平衡.结果表明:降雨结束后初期,灌丛枝干的茎流作用使其根部的土壤含水量明显高于其他部位;灌丛根部水分的入渗速率大于灌丛中部和灌丛外缘.因冠幅的庇荫作用,灌丛下蒸发量小于灌丛外裸露沙地.水量平衡表明:小叶锦鸡儿灌丛下降雨后前期蒸散量明显高于灌丛外裸露沙地,与灌丛下根系的分布有直接关系.  相似文献   

8.
北方粳稻光合速率、气孔导度对光强和CO2浓度的响应   总被引:25,自引:0,他引:25       下载免费PDF全文
 以东北地区主栽的粳稻(Oryza sativa var. japonica)品种为对象,用美国LI-cor公司生产的Li 6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系。结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800 μmol•mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1 600 μmol•m-2•s-1以上时,表观羧化效率也有所减小;在光强和CO2浓度协同作用下,光合速率的响应遵循双底物的米氏方程,在光强和CO2浓度均趋于饱和时,北方粳稻(品种:辽粳294)剑叶的潜在最大光合速率为71.737 8 μmol•m-2•s-1,表观量子效率为0.056 0 μmolCO2•μmol-1 photons,表观羧化效率为0.103 1 μmol•m-2•s-1/μmol•mol-1。气孔导度也随光的增强而增大,对光强的响应规律也可以用Michaelis-Menten曲线模拟,而叶面CO2浓度的提高会使气孔导度减小,气孔导度(Gs)对叶面CO2浓度(Cs)的响应可以用Gs=Gmax,c/(1+Cs/Cs0)的双曲线方程模拟。在光强(PFD)和CO2浓度协同作用下,气孔导度可以用式Gs=Gmax(PFD/PFDc)/[(1+PFD/PFDc)(1+Cs/Cs0)]+Gct估算,当CO2浓度趋于0而光强趋于饱和时,北方粳稻的潜在最大气孔导度(Gmax)为0.670 9 mol•m-2•s-1。在光强和CO2浓度协同作用下,Ball-Berry模型及其修正形式依然能很好地表达气孔导度-光合速率的耦合关系,并且用叶面饱和水汽压差(Ds)修正耦合关系中的相对湿度可以提高模拟精度。  相似文献   

9.
小叶锦鸡儿幼苗对沙埋的生态适应和生理响应   总被引:1,自引:0,他引:1  
以中国半干旱地区固定、半固定沙地分布最广泛的灌木种之一小叶锦鸡儿(Caragana microphylla)为对象,于2010~2011年在内蒙古科尔沁沙地测定了不同深度沙埋下其幼苗的存活率、株高、渗透调节物质含量、保护酶活性和膜透性变化,探讨小叶锦鸡儿对沙埋的生理响应特征。结果显示:(1)与对照相比,当沙埋深度为小叶锦鸡儿幼苗株高的25%~75%时,存活率差异不显著;当沙埋深度为50%~75%时其存活率增加,但株高明显下降,沙埋对其生长具有抑制作用;当沙埋达到其株高100%时幼苗全部死亡。(2)不同沙埋深度对小叶锦鸡儿幼苗叶片细胞膜透性无显著影响,对沙埋深度为其株高25%时,叶片含水量增加,MDA含量下降,POD活性增强,细胞膜未受到伤害;沙埋深度为其株高50%~75%时,叶片含水量下降,MDA含量增加,但SOD和POD对细胞膜起到了协同保护作用,细胞膜也未受到损伤;沙埋深度为株高25%~75%情况下,细胞膜未受到损伤,可溶性糖和脯氨酸含量变化不明显。研究认为:小叶锦鸡儿幼苗只能耐受部分沙埋,完全沙埋则会导致其幼苗全部死亡,沙埋胁迫下可溶性糖和脯氨酸等渗透调节物质含量反应迟缓可能是其耐沙埋能力较弱的主要生理原因之一。  相似文献   

10.
木本植物对CO_2浓度和温度升高的相互作用的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
CO2 浓度和温度是影响木本植物生长和发育的两个关键因子 ,二者在全球变化中的相互作用对木本植物生长和发育具有显著的影响。大多数研究表明 :CO2 浓度增加和温度升高的相互作用可能影响木本植物的生长发育 ,促进光合作用 ;呼吸作用对CO2 浓度增加和温度升高的相互作用存在长期和短期响应差异 ;二者的相互作用促进生物量增加和生产力的增长。木本植物对CO2 浓度和温度升高的相互作用的响应程度因植物种类而异。  相似文献   

11.
大气CO2浓度倍增对水稻光合速率和Rubisco的影响   总被引:8,自引:0,他引:8  
  相似文献   

12.
利用低氧法(2% O_2)研究了大豆叶片光呼吸速率(R_p)对光强和CO_2浓度的响应。结果表明:当光合有效辐射强度(PAR)小于600μmol·m~(-2)·s~(-1)时,大豆叶片的R_p随光强的升高而几乎直线增加;当PAR约为1200μmol·m~(-2)·s~(-1)时,R_p达到最大值(12.69·mol CO_2·m~(-2)·s~(-1)),随后R_p随PAR的升高呈下降趋势;构建的光呼吸速率与光强的方程式拟合结果表明,大豆叶片最大光呼吸速率为13.42·mol CO_2·m~(-2)·s~(-1),其对应的光强为1207.74·mol·m~(-2)·s~(-1),该拟合值与实际测量值极为吻合(P0.05);当PAR一定(2000μmol·m~(-2)·s~(-1))时,随着CO_2浓度的增加(0~1200μmol·mol~(-1)),大豆叶片的R_p呈先升高后下降变化,在600μmol·mol~(-1)时达到最大值(9.97·mol CO_2·m~(-2)·s~(-1));构建的光呼吸速率与CO_2浓度的方程式拟合结果表明,大豆叶片最大光呼吸速率为10.21·mol CO_2·m~(-2)·s~(-1),其对应的外界CO_2浓度为625.74·mol·mol~(-1)。该拟合值也与实际测量值极为吻合(P"0.05)。本文所构建的方程式可较好地拟合光呼吸速率对不同光强和不同CO_2浓度的响应,这对定量研究光呼吸提供了强有力的手段。  相似文献   

13.
厚壁毛竹光合作用对CO_2浓度倍增的短期响应   总被引:1,自引:0,他引:1  
采用Li-6400P光合测定仪对比测定了大气CO2浓度和短期CO2浓度倍增下不同季节厚壁毛竹的光合特性,结果表明:CO2浓度加倍促使最大净光合速率、净光合速率、水分利用率、光合量子效率和光饱和点升高,年平均增幅分别为62.79%、48.74%、94.41%、8.70%和16.67%;CO2浓度加倍促使蒸腾速率、暗呼吸速率和光补偿点下降,年平均降幅分别为17.60%、37.25%和40.50%。不同季节厚壁毛竹光合生理特性参数在CO2浓度加倍后的增加幅度或降低幅度与叶片生理活性和气候变化密切相关。CO2浓度的倍增并未明显改变厚壁毛竹光合特性的季节变化规律,除光补偿点外,其它光合参数的季节大小顺序仍与大气CO2浓度下的相同。厚壁毛竹光合作用对短期CO2浓度升高的响应特征与C3植物光合作用对短期CO2浓度升高响应的普遍规律相符。  相似文献   

14.
为了探讨光照强度和CO2浓度对蛋白核小球藻(Chlorella pyrenoidosa)生长、无机碳利用的复合效应, 丰富绿藻中无机碳浓缩机制的资料, 该文设置两种光照强度(40和120 µmol photons•m-2•s-1)和两种CO2浓度(0.04%和0.16%)组合成4种条件, 比较了蛋白核小球藻生长、无机碳浓度、pH补偿点、光合放氧速率、碳酸酐酶(CA)活性和α-CA基因转录表达对这4种培养条件的响应。结果发现: 蛋白核小球藻在高光强高CO2浓度组生长最快; 低光强高CO2浓度组培养体系中总无机碳浓度为1163.3 µmol•L-1, 显著高于其他3组; 高光强低CO2浓度组藻的pH补偿点最高(9.8), 而低光强高CO2浓度组藻的pH补偿点最低(8.6); 低光强高CO2浓度组藻的最大光合速率(Vmax)和最大光合速率一半时的无机碳浓度(K0.5)最高, 分别是其他3组的1.28-1.91倍和1.61-2.00倍; 高光强低CO2浓度组藻的胞外CA活性最高; 而低光强低CO2浓度组藻的胞外α-CA基因表达量显著高于其他3组。以上结果表明低CO2浓度可促进蛋白核小球藻的pH补偿点和无机碳亲和力的提高, 诱导胞外CA活性及α-CA基因的表达; 该藻主要以HCO3-为无机碳源, 其对无机碳的利用受光照的调节。  相似文献   

15.
水分是干旱沙区植被重建和恢复的主要限制性因子,土壤有效水分含量直接影响植物木质部水分运输能力。但是不同水分条件下不同物种、不同年龄木质部水力特性和叶片气体交换的差异以及土壤水分含量对其影响的相关研究目前尚不明确。因此,该研究以10年和30年树龄人工固沙区的柠条锦鸡儿(Caragana korshinskii)和中间锦鸡儿(C. liouana)为实验材料,研究它们在旱季和雨季下水力特性和光合特性的差异及其关系。研究结果表明,树龄对柠条锦鸡儿和中间锦鸡儿木质部导水率、导水率损失百分比、叶片水势和相对含水量等无显著的影响,而土壤水分含量对其功能性状的影响较显著。树龄和土壤水分含量均对灌木叶片光合作用有显著影响,但在土壤水分条件良好的情况下树龄对其影响不显著。此外,土壤含水量与叶片水分含量和木质部茎比导水率之间呈显著的正相关关系;木质部导水率与叶片水分状态和气孔导度也存在显著的正相关关系,而光合速率与木质部导水率和叶片水分含量存在显著正相关关系,这表明土壤水分含量通过影响木质部导水率和栓塞程度而直接影响了叶片水分状况和光合碳同化能力。总而言之,柠条锦鸡儿和中间锦鸡儿的木质部导水能力和叶片光合...  相似文献   

16.
【目的】近年来随着人类活动的增加,温室气体尤其是大气CO_2浓度升高造成的虫害爆发已成为国际上关注的焦点,因此,研究拟南芥Arabidopsis thaliana上桃蚜取食行为的变化对大气CO_2浓度升高的响应意义重大。【方法】本研究以拟南芥和绿色桃蚜Myzus persicae为研究对象,利用野生型拟南芥Col-0,茉莉酸途径信号传导缺失突变体(jar1)、水杨酸途径信号传导缺失突变体(npr1)、乙烯途径信号传导缺失突变体(ein2-5)为材料,以大气CO_2浓度升高为影响因子,利用刺吸式电位仪(EPG)记录了桃蚜在不同处理的拟南芥上的取食波形。【结果】研究结果发现:CO_2浓度升高缩短了Col-0和jar1植株上蚜虫首次刺探时间和首次到达韧皮部的时间,却延长了npr1和ein2-5上蚜虫首次到达韧皮部的时间,降低了jar1植株上蚜虫总的刺探时间且增加了其总的取食韧皮部时间,但没有改变其它基因型植株上蚜虫总的刺探和取食时间;同时增加了野生型植株上蚜虫的刺探频率,却没有影响其它基因型植株上的刺探频率。【结论】CO_2浓度升高降低了野生型植株和jar1植株抗性,有利于蚜虫到达韧皮部;却增加了npr1和ein2-5上的植物抗性,从而不利于蚜虫到达韧皮部。  相似文献   

17.
小叶锦鸡儿根际微生物群落功能多样性对环境变化的响应   总被引:1,自引:0,他引:1  
利用Biolog技术对内蒙古草原灌丛优势种小叶锦鸡儿(Caragana microphylla)根际土壤微生物群落功能多样性特征及其对大气CO2浓度、土壤氮水平和土壤水分3个环境因子变化的响应进行了研究。结果表明:(1)小叶锦鸡儿根际土壤微生物利用碳源总量在整个培养过程中呈逐渐增加的趋势。其利用比例较高的碳源类型为聚合物、糖类和氨基酸。(2)主成分分析表明,8个处理组的微生物群落功能多样性差异显著,其中与主成分1显著相关的碳源有14种,分别属于聚合物、糖类、氨基酸和羧酸。(3)加倍CO2浓度极显著提高平均颜色变化率(AWCD)以及丰富度指数和Shannon均匀度。(4)氮素添加使AWCD、丰富度指数和Shannon均匀度均极显著降低,其抑制效应在加倍CO2浓度时有所缓解。(5)加水处理对上述指标均有一定的促进作用,但是差异未达显著水平。(6)加倍CO2浓度和氮素添加联合处理下,小叶锦鸡儿根际微生物活性高于对照处理,说明加倍CO2浓度对微生物活性的促进效应强于添加氮素的抑制效应。(7)CO2和氮素对上述指标有交互作用。综上所述,小叶锦鸡儿根际土壤微生物群落的功能在很大程度上受到外界环境因子的影响,对环境变化较敏感的碳源类型为聚合物、糖类、氨基酸和羧酸,与利用比例较高的碳源类型基本一致。  相似文献   

18.
以杉木优良无性系‘洋061’幼苗为材料,设置常规CO_2浓度400μL·L~(-1)(对照组)和CO_2加富浓度800μL·L~(-1)(处理组)两个处理,研究CO_2浓度加富对杉木幼苗生长、根系形态特征、光合生理以及养分含量的影响,以明确杉木优良无性系对CO_2浓度升高的响应特征,为杉木苗木高效培育提供理论依据。结果表明:(1)CO_2加富能显著促进杉木幼苗生物量的积累和苗高的生长,并显著促进杉木根系生长,其根长、根系表面积、根系体积和根系直径分别较对照增加14.60%、28.26%、41.98%和14.70%。(2)CO_2加富能促进杉木叶片类胡萝卜素含量显著增加,使杉木叶片净光合速率(P_n)、胞间二氧化碳浓度(C_i)和水分利用效率(WUE)分别较对照显著提高51.03%、14.13%和151.20%,并使气孔导度(G_s)和蒸腾速率(T_r)分别显著下降58.72%和44.00%。(3)CO_2加富使杉木叶片最大荧光(F_m)、可变荧光(F_v)、PSⅡ潜在光化学效率(F_v/F_o)、PSⅡ实际光化学效率(Φ_(PSⅡ))和光化学淬灭系数(qP)分别较对照显著增加11.48%、11.25%、6.33%、20.38%和30.34%,且不同处理间差异显著,非光化学淬灭系数(NPQ)较对照显著下降21.90%(P0.05),但对初始荧光(F_o)和PSⅡ最大光化学效率(F_v/F_m)无显著影响(P0.05)。(4)CO_2加富处理显著增加植株钙元素的含量,并显著降低植株磷元素的含量。研究认为,短期CO_2加富处理可通过增加光合色素含量,提高叶片净光合速率和光能利用效率,进而增强叶片光合能力,同时促进根系生长,增强植物对养分吸收的能力,最终促进杉木幼苗的生长。  相似文献   

19.
以亚热带森林建群种苦槠为试验材料,采用5种光响应模型对4个CO_2浓度下苦槠叶片的光响应曲线进行模拟,比较不同CO_2浓度下适宜的光响应模型,探讨苦槠对CO_2浓度变化的响应规律。结果表明:5种模型对苦槠叶片光响应曲线的拟合效果优劣次序为直角双曲线修正模型指数改进模型指数模型非直角双曲线模型直角双曲线模型;直角双曲线修正模型对光饱和点(LSP)和最大净光合速率(Pmax)的拟合效果最好,非直角双曲线模型对暗呼吸速率(Rd)的拟合效果最好;5种光响应模型对不同CO_2浓度有不同的适应性,直角双曲线模型、指数模型和直角双曲线修正模型适合低CO_2浓度,非直角双曲线模型适合高CO_2浓度;随CO_2浓度的增加,光补偿点(LCP)和Rd逐渐减小而Pmax逐渐增大;CO_2浓度的增大可以提高苦槠的光合能力及其对弱光的利用能力,并抑制呼吸作用。  相似文献   

20.
大豆光合速率和气孔导度对水分胁迫的响应   总被引:31,自引:0,他引:31  
土壤水分胁迫使两个供试大豆品种(系)光合速率和气孔导度降低,“鲁豆四号”降低的幅度大于小粒大豆品系“7605”。在相同的叶水势下,“7605”的光合速率和气孔导度均高于“鲁豆四号”,但“7605”气孔随水势下降而关闭的速率大于“鲁豆四号”。水分胁迫使叶片温度升高,“7605”比“鲁豆四号”升温较快,但在同一水分处理中,“鲁豆四号”的叶温高于“7605”。水分胁迫降低了大豆的水分利用效率,且“鲁豆四号”降低的速率大于“7605”。结果表明,“7605”对水分胁迫具有较好的适应能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号