首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正对地球上绝大多数生物而言,氧气意味着生命。但生物学往往非常复杂,最近来自麻省总医院的线粒体生物学家Vamsi Mootha的团队在Science杂志发表的文章提出了相反的说法。线粒体是细胞里的"能量供应站",如果它们出现了功能故障,会导致一些严重的线粒体疾病。对一部分线粒体疾病患者来说,高浓度氧气可能是致命的。对线粒体功能障碍的细胞来说,低氧环境可能会  相似文献   

2.
低氧是一种典型的应激环境,细胞在低氧条件下能量和氧化代谢发生改变,其中线粒体产生的大量活性氧严重威胁细胞的存活.线粒体自噬是近年来被发现的细胞适应低氧的一种适应性代谢反应.细胞在低氧条件下能通过上调低氧诱导因 子1(HIF-1),激活BNIP3/BNIP3L及Beclin-1介导的通路诱导线粒体自噬,最终减少ROS的产生,促进细胞的存活,使机体产生低氧适应.综述了线粒体自噬在低氧适应中的作用及其机制.  相似文献   

3.
氧是机体进行新陈代谢和维持生存的必要因素。低氧环境在自然界普遍存在,也是许多重大疾病(如癌症)发生过程中基本的病理生理特征。生物包括昆虫在其生存和发育过程中经常面对低氧的挑战,它们发展出了各自的适应策略以求得生存和繁荣壮大。昆虫对于低氧环境适应包括在气管系统通气量、气体交换模式、体型大小和发育时间等生理机制上的改变。为揭示昆虫低氧适应机制,研究人员针对不同昆虫采用了来自人工选择或者自然选择的品系(种群),使用了基因芯片表达和转录组测序、基因组重测序技术和基因操作等技术。基于这些方法研究发现,在分子机制方面,昆虫可以通过抑制能量代谢、提高氧气利用率来适应低氧环境;还可以通过胰岛素通路、低氧诱导因子(HIF)信号通路等来调节自身代谢活动从而适应环境低氧;除此之外,昆虫的气管系统可以在基因调控下通过代偿性生理和形态变化来适应低氧环境。昆虫低氧适应机制的研究为探求昆虫数亿年进化过程中体形改变、物种形成、种群动态等提供提供新的视野,也增进对动物应对低氧或缺氧机理的深入理解,特别是为研究人类重大疾病的发生提供重要启示。  相似文献   

4.
目的:如何减轻缺氧造成的肺损伤是平原人群进入高原环境时面临的难题。本研究旨在探索外源性1-磷酸鞘氨醇(S1P)对低氧暴露诱导肺上皮细胞损伤的改善作用。方法:对肺上皮细胞(BEAS 2B细胞)进行4 h不同浓度的S1P预处理,之后放入低氧培养箱(氧气浓度为1%)模拟24 h和48 h的低氧暴露,检测细胞的增殖活性、早期凋亡以及线粒体相关功能;通过实时荧光定量PCR检测受体基因(S1PR1-3)的表达水平。结果:外源性S1P预处理可在BEAS 2B细胞中显著提高S1PR3的表达水平;对于24 h-48 h的急性低氧暴露,给予1μM浓度的S1P预处理时对细胞具有显著的保护作用,主要表现在线粒体功能改善、细胞增殖活性提升及早期凋亡率下降,包括:线粒体膜电位(MMP)和三磷酸腺苷(ATP)水平显著升高(P<0.0005),线粒体活性氧(ROS)产生显著减少(P<0.0001),从而显著提高了细胞的增殖活性(P<0.005),并降低早期凋亡率。结论:外源性S1P预处理能通过改善低氧诱导的氧化应激损伤保护肺上皮细胞。S1P在预防急性高原病、改善高原反应方面具有潜在应用价值。  相似文献   

5.
人体肝癌细胞急性低氧及低氧习服差异表达基因分析   总被引:9,自引:0,他引:9  
Wang JH  Shan YJ  Cong YW  Wu LJ  Yuan XL  Zhao ZH  Wang SQ  Chen JP 《生理学报》2003,55(3):324-330
本文分析了人体肝癌细胞(HepG2)急性低氧处理以及低氧习服处理后基因表达谱的改变。急性低氧处理为细胞在1%氧气中培养48h,低氧习服处理为细胞在1%氧气中培养24h,常氧培养24h,以此作为一个周期,重复6个周期。联合应用抑制消减杂交技术和cDNA芯片技术,筛选HepG2细胞经急性低氧处理与正常培养细胞相比差异表达的基因,以及经低氧习服处理细胞与正常培养细胞相比差异表达的基因。结果显示,HepG2细胞经急性低氧处理与在常氧条件下培养相比,差异表达的基因有37个,表达水平全部表现为下调,其中包括参与细胞周期、细胞应激、细胞信号转导、细胞骨架形成、转录相关蛋白及细胞代谢相关蛋白的基因,1个未知基因序列、4个EST序列、5个线粒体蛋白基因,另外有功能不明的蛋白质基因12个。低氧习服处理的细胞与常氧条件下培养的细胞相比,差异表达的基因有6个,其中包括两个线粒体蛋白基因、金属蛋白酶1基因、转铁蛋白基因、Thymosin .beta-4和TPT1基因。其中线粒体蛋白ND4、转铁蛋白、Thymosin.beta-4和TPT1基因的表达呈上调,线粒体NDl及金属蛋白酶1基因的表达水平呈下调。经低氧习服处理后,细胞低氧耐受力提高,低氧习服处理细胞基因的表达与急性低氧处理细胞和正常培养细胞的基因表达不同,这种变化可能与低氧习服细胞低氧耐受力的增强有关。  相似文献   

6.
Wu LY  Ding AS  Ma Q  Wang FZ  Fan M 《生理学报》2001,53(2):93-96
本文用新生大鼠下丘脑培养细胞,研究了低氧预处理对下丘脑细胞缺氧耐受性的影响及其与线粒体膜电位的关系.结果显示:在急性缺氧条件下,低氧预处理可以提高细胞存活率,减少乳酸脱氢酶漏出,此外,低氧预处理可以使线粒体膜电位在缺氧时保持相对高的水平,并诱导B淋巴细胞/白血病-2(B-cell lymphoma/leukemia-2,bcl-2)高表达,结果提示,低氧预处理能提高下丘脑细胞的缺氧耐受性,其机制与线粒体膜电位稳定性增强有关;低氧预处理诱发bcl-2高表达可能是线粒体膜电位稳定性增强的机制之一。  相似文献   

7.
低氧与心肌细胞凋亡   总被引:4,自引:0,他引:4  
细胞凋亡是心肌细胞低氧损伤的主要死亡形式之一。低氧引起心肌细胞凋亡可以通过外部的死亡受体通路以及内部的线粒体通路,两条通路之间又存在复杂的交互作用,其中,线粒体通路在低氧诱导的心肌细胞凋亡中起重要作用。另外,心肌细胞本身也具有多种内源性的凋亡抑制因子。因此,低氧时心肌细胞凋亡的产生是多种因素综合作用的结果,Bcl-2家族蛋白、线粒体通透性改变、细胞色素c的释放以及caspases的活化等参与了低氧引起的心肌细胞凋亡的调控。对低氧时心肌细胞凋亡的认识和深入研究,为人类在缺血性心脏病的防治中提供了一个新的治疗措施。  相似文献   

8.
氧气是哺乳动物机体代谢稳态维持的物质基础,若代谢过程中氧气供给不足,可造成低氧应激。目前,环境低氧、代谢性低氧和携氧细胞功能障碍是造成动物低氧应激的重要成因。目前,低氧对动物机体代谢和组织功能的影响研究主要集中于肺脏、肝脏、消化道、肌肉和乳腺等部位。若处于低氧状态的哺乳动物形成了适应低氧的代谢模式,则可维持其代谢稳态;相反,若动物无法维持低氧状态下的代谢稳态,则会导致机体氧化应激甚至病变。目前,低氧应激在家畜方面的研究主要集中于高原动物代谢适应机制;然而,泌乳期动物机体代谢速率、氧气消耗和自由基水平均较高,但氧在泌乳动物代谢应激形成中的作用及其对泌乳性能的影响,仍有待探索。综述了哺乳动物产生低氧应激的代谢成因与作用结果,旨在探讨哺乳动物低氧应激生物学基础,为进一步从低氧应激调控角度为泌乳动物的健康状况维持提供理论依据。  相似文献   

9.
线粒体是真核细胞中重要的细胞器,是高等生命体赖以生存的能量来源.线粒体异常可引起细胞甚至器官发生病变,越来越多的疾病被证实与线粒体功能障碍有关.线粒体移植是从患者正常组织分离线粒体然后注入线粒体损伤或缺失的部位,使损伤细胞得到救治、器官功能得以恢复的全新干预技术.线粒体移植作为一种新兴治疗方案在一些疾病干预的基础研究中崭露头角,尤其是在保护心脏缺血再灌注损伤领域已经发展到临床试验阶段.本文从线粒体起源出发,总结了仍处于实验阶段的几种线粒体移植方法,概述了线粒体移植在脑缺血引起神经元损伤保护领域、心肌缺血再灌注损伤保护领域和肿瘤治疗领域的研究进展,从分子层面探讨了线粒体损伤及线粒体移植修复的机理,并提出研发患者专属的"线粒体移植治疗生物制剂"的设想,旨在为线粒体缺陷有关疾病的治疗研究提供新的视角.  相似文献   

10.
<正>线粒体功能障碍和细胞蛋白平衡失败是很多疾病和与年龄相关的病变的特征。受损的线粒体会通过各种机制(包括能量剥夺)导致细胞死亡。最近的研究发现了另外一种机制:来自胞质核糖体的线粒体蛋白的低效运输。研究者们发现,线粒体损伤会阻断核编码的蛋白向线粒体内的运输,通过触发胞质中"线粒体前体过度积累压力"(mPOS)的通道造成细胞退化。  相似文献   

11.
<正>氧气对动物生命至关重要,但长期以来人们一直不清楚细胞如何适应氧气水平的变化.为表彰在"发现细胞如何感知和适应氧气供应"方面所做出的贡献,2019年诺贝尔生理学或医学奖被授予了美国科学家威廉·凯林、格雷格·塞门扎以及英国科学家彼得·拉特克利夫.低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是感知低氧的关键蛋白质,通过调控其靶基因的表达来适应不同的氧气水平. HIF-1信号通路在生物发育、代谢、贫血、损伤修复等生理和病理生理过程中具有重要  相似文献   

12.
模型鼠低氧预适应适宜氧气浓度研究   总被引:1,自引:0,他引:1  
目的:研究低氧预适应训练的适宜氧气浓度。方法:设计了短期和长期两种间歇性低氧暴露模式,研究了一系列不同浓度的低氧环境对模型鼠体重、血氧饱和度、游泳能力等方面的影响,进而探讨低氧预适应效应与氧气浓度之间的内在联系。结果:模型鼠长期暴露于低氧环境中,其体重增长率逐步下降;在15%~8%的低氧浓度区间,模型鼠血氧饱和度随氧气浓度降低呈现平台似缓慢下降趋势;低氧预适应训练后的模型鼠游泳能力显著提高,经在10%低氧环境中进行低氧预适应训练后的昆明小鼠游泳能力提高最为明显。结论:适当浓度的低氧预适应训练可以改善模型鼠低氧耐受能力,显著提高模型鼠运动能力。15%~10%氧气浓度区间可视为低氧预适应有益作用区间。10%氧气浓度为模型鼠低氧预适应训练的较适宜浓度。  相似文献   

13.
目的:研究慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase和Ca2 、Mg2 -ATPase以及呼吸链酶复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ活性的影响.方法:经慢性间断低氧暴露(模拟海拔3 000 m、5 000 m分别低氧,每天4 h,共2周,最后8 000 m低氧4 h)和急性低氧(模拟海拔8 000 m低氧4 h)的大鼠,断头处死,迅速取出心脏,分离心肌线粒体,用水解磷酸根法测定ATP酶活性,用Clark氧电极法测定呼吸链酶复合物的活性.结果:①慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase的活性无明显影响.②急性低氧大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性较正常大鼠显著降低,而慢性间断低氧暴露大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性则明显升高,接近正常水平.③急性低氧大鼠心肌线粒体呼吸链酶复合物I(NADH-CoQ还原酶)、复合物Ⅱ(琥珀酸-CoQ还原酶)、复合物IV(细胞色素氧化酶)活性较正常大鼠显著降低,而经慢性间断低氧暴露后,三者的活性均显著提高.相同实验条件下,低氧对复合物Ⅲ(CoQ-细胞色素C还原酶)活性无明显影响.结论:慢性间断低氧暴露可以显著提高心肌线粒体Ca2 、Mg2 -ATPase和呼吸链酶复合物Ⅰ、Ⅱ、Ⅳ的活性,从而改善低氧时心肌线粒体呼吸链的功能,维持心肌正常能量代谢,最终提高心肌收缩和舒张功能.  相似文献   

14.
在常氧孵育中,当孵育介质自由钙离子浓度升高时,离体心肌线粒体钙含量显著增加。同时,线粒体状态4呼吸速率也明显加快并与其钙含量的增加呈正相关关系。在低氧孵育中,当孵育介质自由钙离子浓度升高时,离体心肌线粒体钙含量没有明显的增加,其状态4呼吸速率虽有加快但程度明显较常氧孵育时低。另外,在低孵育介质自由钙离子浓度(pCa8.0)的条件下,低氧可引起轻微的线粒体状态4呼吸速率加快。从以上结果作者推测,低氧引起心肌细胞的线粒体损伤可能主要不是低氧直接对线粒体作用所造成的,而是由低氧引起的心肌细胞胞浆环境变化对线粒体破坏的结果。其中胞浆自由钙离子的升高可能是一个的原因。  相似文献   

15.
在电镜下观察油松 (PinustabulaeformisCarr.)传粉后的胚珠临近受精时的花粉管和卵细胞的细胞质、受精时雄配子体细胞质的传递、游离核和细胞原胚发育时期质体和线粒体的传递。在成熟卵细胞中含许多线粒体 ,缺少正常结构的质体 ,它们转变为大内含体。此外 ,卵细胞还有丰富的小内含体和其他一些细胞器。花粉管在卵细胞的珠孔端释放其内含物。精核与卵核融合时 ,核周围未见来自精细胞的质体和线粒体。不参与融合的精核停留在接受液泡旁 ,在其周围有大量的雄性细胞质 ,其中混合有精细胞、管细胞和卵细胞的细胞器。在游离核原胚时期 ,核周区的细胞质中可见雄性与雌性亲本的细胞器相混合 ;其中许多线粒体与原来卵细胞中的线粒体有相同的形态 ,也有一些线粒体看来是来自精细胞和管细胞 ;质体是由雄配子体传递 ,形态与精细胞的或花粉管中的质体相似。卵细胞中变异的质体 (即大内含体 )在原胚发育时期变为液泡状 ,而雄性质体参加到新细胞质中。在原胚细胞中 ,线粒体大多数为母本来源 ,质体则表现为精细胞或管细胞的质体形态。该研究确定了油松具父系质体和双亲线粒体遗传的细胞学基础。对裸子植物线粒体和质体遗传的机理从细胞学的角度进行了分析。  相似文献   

16.
正心脏细胞中关键线粒体过程的缺失会引发一种扩张性心肌病,这常常会引发患者出现心脏病及早产儿死亡,近日一项刊登在国际杂志Science上的研究报告中,来自西班牙的科学家通过研究发现了蛋白质YME1在线粒体的数量、类型和形状中的作用,研究者指出,该蛋白质的缺失会诱发心脏病患者出现典型的代谢性缺陷,而且基于饮食的代谢性策略足以帮助纠正心脏功能,从而为开发治疗心脏疾病的新型疗法提供希望。  相似文献   

17.
线粒体是细胞内的一种多功能细胞器,主要负责能量产生、细胞凋亡等生命过程。线粒体缺陷与临床上百种疾病相关。越来越多的研究已表明,细胞外的线粒体可被细胞内吞,进入到细胞内,然后以完整的形态发挥作用。研究发现,线粒体是对氧含量和酸碱度极为敏感的细胞器,细胞内环境可影响线粒体的功能。外源线粒体进入到生理环境中的细胞后,将提高细胞能量供应、促进细胞存活;但线粒体进入到缺氧和酸性的肿瘤组织后,将大量产生氧自由基、诱发细胞死亡。线粒体这种环境响应性的药理特性,可应用于清除肿瘤细胞、恢复受损组织的功能。目前线粒体已用于治疗中枢神经系统疾病(帕金森氏病、抑郁症、精神分裂症等)、外周系统疾病(缺血性心肌损伤、脂肪肝、肺气肿等)和肿瘤等,为线粒体相关疾病的治疗提供了新的方法。文中对这种新型生物治疗方法的研究进展、医学应用和存在的挑战进行综述。  相似文献   

18.
<正>英国新一期《自然》杂志刊登一项最新研究称,寿命受母系遗传影响更大,因为线粒体中的一些基因变异会影响后代寿命,而线粒体基因组只属于母系遗传。这项研究由德国马克斯·普朗克研究所和瑞典卡罗琳医学院研究人员共同完成。他们通过动物实验发现,如果在雌性实验鼠的线粒体DNA中诱发一些特定的基因变异,它们的后代平均寿命仅为45周左右,比正常雌鼠后代少活约10周。此外,这些有遗传缺陷的实验鼠还出现了脑损伤、运动功能障碍等衰老加速的症状。研究人员解释说,线粒体是细胞中的"动力工厂",为细胞的生命活动提供动力和场所,一般认为线粒体损伤与衰老之间有密切关系。而线粒  相似文献   

19.
Xu Y  Liu JZ  Xia C 《生理学报》2008,60(1):59-64
本文旨在通过观察棕榈酸对模拟高原低氧大鼠离体脑线粒体解耦联蛋白(uncoupling proteins,UCPs)活性的影响及脑线粒体质子漏与膜电位的改变,探讨UCPs在介导游离脂肪酸对低氧时线粒体氧化磷酸化功能改变中的作用.将SpragueDawley大鼠随机分为对照组、急性低氧组和慢性低氧组.低氧大鼠于低压舱内模拟海拔5 000 m高原23 h/d作低氧暴露,分别连续低氧3 d和30 d.用差速密度梯度离心法提取脑线粒体,[3H-GTP法测定UCPs含量与活性,TPMP 电极与Clark氧电极结合法测量线粒体质子漏,罗丹明123荧光法测定线粒体膜电位.结果显示,低氧使脑线粒体内UCPs含量与活性升高、质子漏增加、线粒体膜电位降低;同时,低氧暴露降低脑线粒体对棕榈酸的反应性,UCPs活性的改变率低于对照组,且线粒体UCPs含量、质子漏、膜电位变化率亦出现相同趋势.线粒体质子漏与反映UCPs活性的Kd值呈线性负相关(P<0.01 r=-0.906),与反映UCPs含量的Bmax呈线性正相关(P<0.01,r=0.856),与膜电位呈线性负相关(P<0.01,r=-0.880).以上结果提示,低氧导致的脑线粒体质子漏增加及膜电位降低与线粒体内UCPs活性升高有关,同时低氧暴露能降低脑线粒体对棕榈酸的反应性,提示在高原低氧环境下,游离脂肪酸升高在维持线粒体能量代谢中起着自身保护和调节机制.  相似文献   

20.
科研快讯     
<正>PNAS:通过选择卵子或可避免线粒体疾病日本筑波大学日前发表公报说,该校林纯一教授领导的研究小组在动物实验中发现,通过选择卵子,可以防止线粒体疾病在动物"母婴"间遗传。线粒体是细胞内制造能量的小器官。细胞除了细胞核内有DNA外,线粒体也有独立的DNA。此前研究发现,线粒体DNA如果出现突变,细胞的生命活动会因为能量不足而受损,尤其是需要很多能量的脑和肌肉,继续恶化下去可能会出现脑中风、智力障碍、肌肉力量下降、高乳酸血  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号