首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
可溶性有机质(DOM)的生物降解性影响着土壤有机质的存留和释放,对深入认识森林土壤养分循环意义重大。为探究森林更新对土壤DOM降解特征的影响,选取亚热带地区米槠天然林(NF)、米槠次生林(SF)和米槠人工促进天然更新林(AR)土壤DOM溶液为研究对象,进行室内降解(42 d)试验。结果表明: 1)3种林分土壤可溶性有机碳(DOC)的降解率和易降解DOC的比例均为SF>AR>NF;可溶性有机氮(DON)和微生物生物量碳(MBC)是显著影响易降解DOC比例的因子;2)难降解组分占3种林分土壤DOC的大部分(72.3%~94.6%),其周转时间长,有利于稳定土壤有机质(SOC)的形成;3)土壤DOM最初的腐殖化指数(HIXem)会影响易降解DOC的周转时间。DOM光谱结构随降解过程呈现动态变化,说明DOM中易降解组分被消耗完后,微生物会转而降解芳香类和疏水性物质以获取碳源。综上,米槠天然林更新为次生林和人促林后增加了易降解DOC的比例,提高了土壤DOM生物可降解性,不利于SOC的积累。  相似文献   

2.
中国亚热带是受氮沉降影响最严重的地区之一.土壤可溶性有机质(DOM)被认为是土壤有机质的重要指标,氮沉降可能通过改变微生物活性导致土壤DOM质量和数量的变化.本研究以亚热带毛竹林为研究对象,设置对照、低氮和高氮3个水平,进行为期3年的施氮处理,探究氮添加对土壤DOM含量、光谱学特征和微生物胞外酶活性的影响.结果表明: 与对照相比,施氮后土壤pH、可溶性有机碳、可溶性有机氮含量和芳香化指数无显著变化,而腐殖化指数随施氮量的增加显著增加,微生物酶活性也随着施氮量的增加呈现先升高后下降的趋势.傅里叶红外光谱结果显示,土壤DOM在7个区域的相似位置存在吸收峰,其中,1000~1260 cm-1的吸收峰最强,表明施氮处理后,土壤中多糖类、醇类、羧酸类及酯类物质增加.三维荧光光谱结果表明,施氮处理后,土壤DOM结构有显著改变,表现在低分子物质如类蛋白质物质和微生物代谢产物减少,而高分子物质如类腐殖质物质显著增加.总的来说,施氮使得土壤氮与微生物需求相适应,促进微生物分解DOM中易降解的物质,土壤DOM结构更加复杂,短期氮沉降可能有利于土壤肥力的改善.  相似文献   

3.
土壤溶解性有机质及其表面反应性的研究进展   总被引:5,自引:0,他引:5  
溶解性有机质(DOM)是土壤溶液中的一个重要的组成部分,在土壤化学和生物过程中起着十分重要的作用。虽然DOM在天然有机质中所占的比例并不高,但它将土壤中的矿物质、有机质联系在一起,并能调控环境污染物的迁移转化与归宿,因此国内外学者都很重视溶解性有机质对土壤环境中污染物环境行为影响的研究。综述了DOM的分类和分离技术,DOM的结构及其表征方法,DOM的表面反应性以及对有机污染物、重金属在土壤中吸附、迁移的影响等,并提出了有待于进一步研究的一些问题。  相似文献   

4.
陆地生态系统中水溶性有机质的环境效应   总被引:43,自引:3,他引:40  
黄泽春  陈同斌  雷梅 《生态学报》2002,22(2):259-269
目前水溶性有机质(Dissolved Organic Matter)已逐步成为陆地生态系统中的一个研究热点。系统地评述了陆地生态系统中DOM的组成特点及其环境效应。尽管关于陆地生态系统中DOM的研究还不完善,至今对其性质,组成和分类方法等问题看法不一,但现有结果已经表明DOM是一种十分活跃的重要化学组分,它对陆地生态系统中污染物质的溶解,吸附,解吸,吸收,迁移和生物毒性,微生物活动以及土壤形成过程等均有显著的影响。影响DOM在地生态系统中的环境效应的主要因素包括:DOM与污染物的络合作用,污染物溶解/沉淀作用,土壤对DOM的吸附作用,土壤质地,酸碱缓冲作用等。  相似文献   

5.
土壤圈是地球各圈层物质循环和能量交换的枢纽,在土壤圈中的养分变化和生物结构变化对农业持续发展的影响起重要作用[6]。土壤有机质层是动态的生态系统。它是由植物、动物和微生物及其它环境因素共同作用而组成的物质和能量交换系统。其中土壤中有机质释放的具有生物活性的酶类也参与这一过程。这种作用与有机质的合成和分解密切相关,其作用集中表现在活性有机质的动态变化方面。所以土壤活性有机质可以表征土壤物质循环特征,也可用以评价土壤质量的优劣。有机质的生产和矿化过程是土壤中生物因素和非生物因素共同作用的结果。因此,…  相似文献   

6.
土壤活性有机质及其与土壤质量的关系   总被引:86,自引:2,他引:86  
活性有机质是土壤的重要组成部分 ,主要包括溶解性有机碳、微生物生物量、轻组有机质。它在土壤中具有重要作用 :(1)可以表征土壤物质循环特征、评价土壤质量 ,可以作为土壤潜在生产力以及由土壤管理措施引起土壤有机质变化的早期指标 ;(2 )在养分周转中起重要作用 ,是植物的养分库 ,可以提供植物所需要的养分如氮、磷、硫等 ;(3)能稳定土壤结构 ,对维持团粒结构稳定性有重要作用。从土壤养分、土壤物理、化学性质方面讨论了活性有机质与土壤质量的关系。土壤中的溶解性有机碳、微生物生物量碳氮含量与土壤有机碳、全氮和碱解氮等物质的含量呈正相关。活性有机质受土壤质地、含水量、温度等因素影响 ,与土壤酸碱度、阳离子交换量等也有关。土壤微生物生物量碳和微生物量 C/有机碳比与土壤粘粒、粉粒含量呈正相关、与砂粒含量呈负相关  相似文献   

7.
城市湿地不仅面临着外源有机质负荷不断增加的问题,而且湿地表层土壤的有机质在城市建设过程中会被破坏。通过外加樟树树叶浸出液,利用实时荧光定量PCR技术,模拟研究了外源有机质增加对湿地土壤表层微生物丰度影响。结果表明,土壤结构的改变显著影响细菌、古菌及氮循环各环节功能基因的丰度。土壤有机质含量下降,细菌及氮循环相关功能基因的丰度都显著降低(P0.05)。同时提高上覆水中的外源氮和DOM含量会显著促进湿地微生物以及氮功能基因丰度的增加。外加DOM会显著影响NO2--N向N2O、NO的转化过程的两个基因。  相似文献   

8.
土壤中水溶性有机质及其对重金属化学与生物行为的影响   总被引:35,自引:3,他引:35  
土壤水溶性有机质是陆地生态系统和水生生态系统中一种重要的、很活跃的化学组分,已成为环境科学、土壤学和生态学等学科的研究热点.土壤DOM对重金属化学与生物行为有重要影响。但其机理尚不清楚.文中从土壤性质、环境条件、人为因素等方面阐述了土壤DOM产生及影响因素,总结评述了DOM对重金属化学行为和生物有效性的影响,将DOM对重金属的影响机制归纳为络合机制、竞争吸附机制、酸碱缓冲机制.在此基础上,提出了DOM研究存在的问题及其展望.  相似文献   

9.
塑料处理不当造成的污染问题已成为全球性难题。目前的解决办法除回收利用与使用可生物降解塑料替代之外,最主要途径仍是寻求高效的塑料降解方法。其中,采用微生物或酶处理塑料的方法因其具有条件温和、不产生次生环境污染的优势而受到越来越多的关注。塑料生物降解技术的核心是高效解聚微生物/酶,然而当前的分析检测方法无法满足塑料生物降解资源的高效筛选,因此开发准确、快速的塑料降解过程分析方法,对于生物降解资源筛选和降解效能评价具有重要意义。本文介绍了近年来在塑料生物降解领域的常用分析检测技术,包括高效液相色谱、红外光谱、凝胶渗透色谱以及透明圈测定等,重点讨论了荧光分析策略在快速表征塑料生物降解过程中的应用,为进一步规范塑料生物降解过程的表征与分析研究,以及开发更高效的塑料生物降解资源筛选方法提供借鉴。  相似文献   

10.
全球气候变化背景下区域降雨格局变化可能深刻影响土壤可溶性有机质(DOM)的数量和质量.为了解亚热带森林土壤DOM对降雨减少的响应,通过6年不同强度(对照、-30%、-60%)的隔离降雨模拟试验,采用光谱技术,研究了降雨减少对亚热带米槠天然林不同深度土壤DOM数量和结构的影响.结果表明: 与对照相比,隔离降雨使0~10 cm土层中可溶性有机碳(DOC)和可溶性有机氮(DON)含量显著降低,其中-30%处理DOC下降幅度小于DON, 而-60%处理DOC下降幅度大于DON,0~10 cm土层中DOC和DON含量都显著高于10~20 cm土层.-30%处理土壤DOM中源于微生物代谢的芳香类腐殖质和烷烃比例上升;-60%处理土壤DOM中微生物代谢产物的相对贡献率减少.除了隔离降雨后水分变化等直接影响外,微生物活性也是本试验区影响DOM数量和结构的重要因素.  相似文献   

11.
陆地生态系统中人为因素对DOM影响研究进展   总被引:1,自引:2,他引:1  
卢萍  杨林章 《生态学杂志》2005,24(11):1308-1313
尽管DOM和WEOM只占土壤有机质的一小部分,却是土壤溶液的重要组成部分,参与众多土壤过程。本文着重介绍DOM和WEOM的定义、研究方法及森林和农田两种不同生态系统中DOM和WEOM的研究现状及耕作、施肥等农业措施对DOM和WEOM的影响。已有研究主要集中于DOC,而缺乏对DON、DOP的研究,且研究方法间差异较大。森林生态系统DOM/WEOM含量要高于草地和耕地。土地利用方式变化对DOM的影响主要取决于改变后的土地利用方式。管理措施对DOM/WEOM通常只有短暂的影响.且不同因素作用结果不一。  相似文献   

12.
土壤有机质概念和分组技术研究进展   总被引:63,自引:2,他引:63  
土壤有机质一直是土壤学研究领域的重点,在过去的50年里,对土壤质量可持续性观念的增强和寻找快速判断人为因素对土壤质量影响方向指标的强烈愿望导致了土壤有机质的研究重点发生了急剧变化:对农业措施反映慢的土壤腐殖质类物质的研究正在退出土壤有机质研究领域,而侧重点逐渐转向了土壤中未受微生物作用或正在受微生物降解的有机残体;也出现了新的土壤有机质研究概念和对应测试手段:土壤有机质的比重分组、与有机质结合的土壤颗粒大小分组、土壤团聚体中的POM和iPOM以及土壤水溶性有机质和微生物体C等概念和测试手段被相继提了出来,土壤有机质的研究重点正在从土壤微生物的作用产物(腐殖质)向土壤微生物作用前的、具有部分生物活性的有机质(轻组有机质、砂粒组和粗粉砂粒组中的有机质、POM和iPOM)和完全具有生物活性的有机质(微生物体C和水溶性有机质)转移,这一过程与土壤有机质概念的拓展密不可分。  相似文献   

13.
生源要素有效性及生物因子对湿地土壤碳矿化的影响   总被引:3,自引:0,他引:3  
张林海  曾从盛  仝川 《生态学报》2011,31(18):5387-5395
湿地土壤是全球碳存储的重要场所,湿地生态系统的碳循环过程对全球变化有重要指示作用。土壤碳矿化是湿地生态系统碳循环的重要环节,对于认知湿地生态系统生物地球化学循环过程具有重要的意义。综述了生源要素及生物因素对湿地土壤碳矿化的内在作用机制。土壤活性有机碳库通过调节土壤能源物质和微生物活性影响土壤碳库的有效性,是表征土壤碳矿化的敏感指标。湿地其它养分如N、P、S等元素的有效性也是影响土壤碳矿化的关键要素。电子受体(NO3-、SO42-、Fe3+、Mn4+等)对湿地土壤碳矿化和有机碳转变的影响主要通过电子受体的还原过程完成,在厌氧分解过程中,湿地土壤利用难溶性电子受体可能是土壤C矿化的更重要途径。动物、植物、微生物群落和区系等则是土壤碳矿化的主要驱动因子。土壤动物区系在有机态养分矿化为无机态养分的过程有着独特的功能,能显著增加土壤碳矿化。土壤微生物的活性,决定着土壤中有机碎屑的降解速率,是土壤有机碳分解周转的主要诱导因素。湿地植物则通过影响根系、微生物呼吸底物的供应以及对小气候和土壤因子的调节而影响土壤有机质的分解。湿地生源要素和生物因子还极易与土壤理化性质如温度、水分、pH值和质地等环境因素形成交互和制约,共同影响土壤碳矿化。最后,提出了进一步研究生源要素和生物因素与湿地土壤碳矿化关系需要解决的一些重要问题。  相似文献   

14.
微生物降解磺酰脲类除草剂的研究进展   总被引:1,自引:0,他引:1  
磺酰脲类除草剂是一种高效、广谱、高选择性的除草剂,但其长期广泛使用对生态环境造成了严重破坏,因此对于如何科学合理使用磺酰脲类除草剂、有效防治作物药害和降低对人类的危害等问题成为近年来的研究热点。磺酰脲除草剂在土壤中以化学降解和生物降解方式为主,生物降解是自然界本身具有的一种降解污染物的方式,是一种可行性高、副作用小的方法。近年来,很多学者已经开始研究并利用真菌、细菌等微生物来降解磺酰脲类除草剂,取得了许多重要结果。本文总结了磺酰脲类除草剂的性质、结构以及降解机理、可降解该类除草剂的微生物种类和影响微生物降解效率的因素;最后指出了现阶段存在的问题并对磺酰脲类除草剂的未来发展趋势进行展望。  相似文献   

15.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类在环境中广泛存在的持久性有机污染物,微生物降解是去除环境中多环芳烃污染的主要途径。传统的有关PAHs微生物降解的研究主要依靠分离培养技术,难以准确认识PAHs微生物降解的原位过程及机制。近年来发展起来的原位表征方法可以在基因及单细胞水平研究PAHs在复杂环境中的微生物降解过程,能够原位表征具有PAHs降解功能的微生物及其功能基因和代谢活性,是阐明PAHs原位降解过程及分子机制的强有力的手段。该文综述了宏基因组技术(meta-genomics)、稳定同位素探针技术(stable isotope probe,SIP)、荧光原位杂交技术(fluorescence in situ hybridization,FISH)、拉曼光谱技术(Raman spectra)以及二次离子质谱技术(secondary ion mass spectrometry,SIMS)等原位表征技术在PAHs微生物降解研究领域的应用及其存在的问题和发展趋势等。PAHs微生物降解过程及机制的原位表征将为缓解与修复PAHs污染提供科学基础。  相似文献   

16.
海洋石油污染物的微生物降解与生物修复   总被引:28,自引:0,他引:28  
石油是海洋环境的主要污染物 ,已经对海洋及近岸环境造成了严重的危害。微生物降解是海洋石油污染去除的主要途径。海洋石油污染物的微生物降解受石油组分与理化性质、环境条件以及微生物群落组成等多方面因素的制约 ,N和P营养的缺乏是海洋石油污染物生物降解的主要限制因子。在生物降解研究基础上发展起来的生物修复技术在海洋石油污染治理中发展潜力巨大 ,并且取得了一系列成果。介绍了海洋中石油污染物的来源、转化过程、降解机理、影响生物降解因素及生物修复技术等方面内容 ,强调了生物修复技术在治理海洋石油污染环境中的优势和重要性 ,指出目前生物修复技术存在的问题。  相似文献   

17.
植物根系分泌物生态效应及其影响因素研究综述   总被引:12,自引:0,他引:12  
植物根系分泌物的形成是植物体代谢过程中重要的生理现象,为“植物-土壤”体系物质周转的重要环节.研究植物根系分泌物对于了解陆地生态系统质能过程、碳氮收支平衡及提高生态系统的初级生产具有重要意义.本文从植物根系分泌物对植物生理性状、土壤微生物、土壤物质周转及有机污染物降解影响等4个方面对植物根系分泌物的生态效应进行综述,并从重金属含量、营养元素水平、土壤水分和光热条件、物种基因型、土壤微生物状况和外源有机污染物添加的角度综述了影响植物根系分泌物的因素,旨在对植物根系分泌物的生态效应和影响因素进行总结,并根据目前的研究现状,从研究对象、研究方法和效应评估方面进行了展望.  相似文献   

18.
磺酰脲除草剂在土壤中的环境行为研究进展   总被引:14,自引:0,他引:14  
概述了磺酰脲除草剂在土壤中的吸附与解吸附,降解与残留、迁移以及抑制土壤酶活性等环境行为,探讨了土壤pH值、不同土壤类型、土壤水分含量及有机质等环境行为过程的影响,引用分布活性模型来解释除草剂的解吸滞后现象,并对磺酰脲除草剂在土壤中的生物降解和非生物降解机理进行了探讨,并从生态毒性,吸附作用力以及降解模型方面对今后的研究进行了展望。  相似文献   

19.
陈袁波  邓思宇  余珂  周旭东  于志国 《生态学报》2020,40(24):8948-8957
泥炭沼泽湿地土壤(泥炭土)分解过程是控制泥炭土碳排放的关键过程,其中可溶性有机质(DOM)是泥炭分解过程的主要输出物。DOM富含具有氧化还原活性的官能团,其中酚基具有抗氧化性质,是DOM氧化还原活性的重要组成部分,对驱动有氧和缺氧条件下的氧化还原过程意义重大。同时,酚基也可抑制泥炭的氧化降解,在泥炭土分解过程中起着重要作用。目前,关于泥炭分解过程中DOM氧化还原能力影响机制的相关研究较少。利用创新介导电化学方法、激发-发射荧光矩阵光谱法(EEM),直接定量、定性评估DOM氧化还原变化程度,进而探讨(1)取自两个泥炭样地(OS/LB)的地表水、地下水、孔隙水样品中DOM的氧化还原性能;(2)来自泥炭样地OS的泥炭孔隙水剖面中DOM的氧化还原能力变化规律以及与泥炭分解的重要指标间的关系(如C/N和δ13CDOC)。结果表明:选取电子转移能力(ETC)作为表征DOM氧化还原能力的指标,不同来源DOM的ETC值主要在2-4 mmole-/gC之间;在泥炭土中DOM的ETC值与醌基和酚基的光谱性质参数存在强相关,这些基团对DOM氧化还原能力具有较大影响。具体表现为:在采样区OS,5-50 cm深度和0-210 cm深度的泥炭孔隙水剖面中,酚基在任意深度都是主导DOM氧化还原活性的重要组成部分,而醌基仅在没有淹水、有氧的近地表20 cm深度处时起到重要作用。在泥炭分解过程中,DOM氧化还原能力随深度的变化主要是受泥炭分解程度不同所致的泥炭自身酚基含量的变化所影响,特别是在未受地下水位波动影响的较大深度处。研究探讨泥炭分解过程中DOM氧化还原能力变化特征及其影响机制,为厘清有机质与泥炭沼泽湿地生物地球化学过程提供理论支撑。  相似文献   

20.
DOM对米槠次生林不同土层土壤微生物呼吸及其熵值的影响   总被引:3,自引:0,他引:3  
吴东梅  郭剑芬  张政  李帅军  杨玉盛 《生态学报》2018,38(11):3806-3815
可溶性有机质(Dissolved organic matter,DOM)作为土壤可溶性有机碳的重要来源,进入土壤之后通过改变土壤微生物数量和活性影响土壤矿化。DOM输入对土壤微生物呼吸和熵值的研究多集中在表层土壤,但对深层土壤微生物呼吸和熵值的影响关注较少。通过室内培养实验(120 d)研究米槠(Castanopsis carlesii)鲜叶DOM添加对表层土壤(0—10 cm)和深层土壤(40—60 cm)微生物呼吸及其土壤代谢熵和微生物熵的影响,为揭示DOM输入对亚热带森林土壤碳过程的影响提供理论依据。结果表明,在培养第1天,添加DOM的表层和深层土壤CO_2瞬时排放速率均显著高于对照(P0.001),分别是对照(不添加DOM)的3.58倍和6.93倍,之后显著下降。就累积排放量而言,无论是DOM添加处理还是对照,表层土壤显著大于深层土壤;在米槠鲜叶DOM添加后,表层土壤累积排放量显著大于对照的表层土壤(P0.001),但DOM添加处理深层土壤累积排放量与对照的深层土壤无明显差异。就微生物生物量碳而言,表层土壤微生物生物量碳含量在培养期间显著大于深层土壤。在整个添加DOM培养期间,表层土壤微生物生物量碳含量显著大于表层对照土壤,深层土壤微生物生物量碳含量显著大于深层对照土壤(第3天除外)。培养结束时(120 d),米槠鲜叶DOM添加处理下,表层土壤和深层土壤有机碳含量与第3天相比分别减少26%和19%。米槠鲜叶DOM添加处理后的深层土壤代谢熵(qCO_2)显著低于对照的深层土壤和DOM添加处理的表层土壤qCO_2(P0.001),说明外源DOM进入深层土壤后提高了土壤微生物对碳的利用效率。米槠鲜叶DOM添加处理后的深层土壤微生物熵是培养第3天的1.58倍,显著大于培养初期(P0.05),而DOM添加处理的表层土壤、对照的表层土壤与深层土壤的微生物熵分别是培养第3天的68%、79%和21%,说明DOM添加提高了深层土壤质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号