首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
自噬是指胞浆内大分子物质和细胞器在膜包囊泡中大量降解的生物学过程,其具有独特的分子机制、形态改变和特有的调控通路,作为各种调控通路交汇点——mTOR复合体和Beclin1复合体发挥了至关重要的作用。对于人体而言,自噬具有维持细胞自我稳态,促进细胞生存的作用,然而,过度自噬则可以引起细胞死亡即"自噬性细胞死亡"。相关研究表明,自噬的这种特点与肿瘤的发生密切相关。对于肿瘤,自噬作用好似一把双刃剑,既促进其发生又抑制其形成。  相似文献   

2.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

3.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞"自我消化"过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把"双刃剑",对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/m TOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(m TOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/m TOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

4.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

5.
自噬(autophagy)是真核细胞特有的普遍生命现象,通过降解受损细胞器和大分子并实现细胞内成分的循环利用。在维持细胞自我稳态、促进细胞生存方面起重要作用,广泛参与多种生理和病理过程。自噬活性与肿瘤及其耐药密切相关,所以就自噬及其在肿瘤耐药中作用的研究进展进行简要综述。  相似文献   

6.
氧化低密度脂蛋白(oxygenized low density lipoprotein, ox-LDL)诱导人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)损伤有助于动脉粥样硬化(atherosclerosis, AS)的发展。但ox-LDL对HUVECs自噬的影响及机制尚不清楚。为探究其机制,采用体外培养HUVECs,建立ox-LDL损伤模型。透射电子显微镜观察HUVECs中自噬体的变化;Western印迹法检测p-AMPK、AMPK、p-mTOR、mTOR及Beclin1、LC3-II、P62的表达。结果显示,与对照组比较,透射电子显微镜下观察到ox-LDL组的自噬体明显增多。Western印迹结果显示,与对照组比较,ox-LDL组Beclin1(0.81±0.04 vs. 1.83±0.11,P<0.01)、LC3-II(0.80±0.06 vs. 1.61±0.06, P<0.01)和P62(0.65±0.10 vs. 1.64±0.17, P<0.01)表达显著增高。ox-LDL和BafilomycinA1共同干预组Beclin-1(3.15±0.15 vs. 3.17±0.13, P>0.05)、LC3-II(2.95±0.12 vs. 2.96±0.12, P >0.05)和P62(3.26±0.15 vs. 3.19±0.15, P>0.05)表达与BafilomycinA1组无显著差异,ox-LDL未使自噬起始增加,可能是降解受损导致自噬体的积累。与对照组比较,ox-LDL增加p-AMPK (0.47±0.03 vs. 0.96±0.03, P<0.01)表达,并降低p-mTOR(0.86±0.04 vs. 0.25±0.05, P<0.01)表达。单独阻断mTOR时, Beclin-1(0.81±0.05 vs. 2.19±0.17, P<0.01)、LC3-II(0.76±0.13 vs 2.00±0.05, P<0.01)和P62(0.74±0.12 vs. 1.94±0.11, P<0.01)表达显著增加。亮氨酸(Leucine)可增加p-mTOR(0.87±0.11 vs. 1.67±0.07, P<0.01)表达,并降低Beclin-1(0.81±0.05 vs. 0.37±0.03, P<0.01)、LC3-II(0.76±0.13 vs. 0.41±0.02, P<0.01)和P62(0.76±0.10 vs. 0.44±0.04, P<0.01)表达,但ox-LDL可使Leucine预处理后的p-mTOR(1.67±0.11 vs. 0.82±0.02, P<0.01)表达显著降低,并且Beclin-1(0.37±0.03 vs. 0.78±0.04, P<0.01)、LC3-II(0.41±0.02 vs. 0.78±0.02, P<0.01)和P62(0.44±0.04 vs. 0.74±0.04, P<0.01)表达显著增加。说明mTOR参与ox-LDL诱导的自噬。与ox-LDL组相比,ox-LDL和Si-AMPK共同处理组p-mTOR(0.25±0.05 vs. 0.46±0.03, P<0.01)表达增加以及Beclin-1(1.97±0.04 vs. 1.26±0.12, P<0.01)、LC3-II(1.42±0.10 vs. 0.95±0.05, P<0.01)和P62(1.58±0.09 vs. 0.98±0.11, P<0.01)表达降低。以上结果表明,ox-LDL通过AMPK/mTOR途径诱导HUVECs发生自噬,并且导致自噬体的积累。  相似文献   

7.
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)在肿瘤的发生、侵袭、转移,甚至肿瘤的局部复发都起着重要的作用。头颈肿瘤作为全球最常见的癌症死亡原因之一,有多元的逐步恶化的过程。近年来研究表明m TOR信号通路的异常表达是头颈肿瘤最常见的病理改变之一,且m TOR信号通路的多种组成元件与头颈肿瘤患者的预后有明显的相关性,这不仅可为头颈肿瘤的特异性靶向治疗提供依据,而且也可为预测头颈肿瘤患者的预后提供参考。本文就m TOR信号通路及其在头颈肿瘤中的作用做一综述,旨在对m TOR信号通路和头颈肿瘤及其预后的关系有更进一步的认识。  相似文献   

8.
9.
哺乳动物雷帕霉素靶蛋白通路与细胞自噬   总被引:1,自引:0,他引:1  
细胞自噬作为真核生物中最基本的生命现象,广泛参与机体的多种生理和病理过程,其发生的分子机制复杂且高度保守。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路和Beclin1及相关因子发挥了最直接的调控作用。mTOR可通过上游各信号因子的调节引起自身活性的变化,并通过调节下游复合物Atg1/ULK的生成诱导细胞自噬。弄清mTOR通路及其对自噬复合物的作用机制将有助于从分子水平上对各种肿瘤疾病进行分析和治疗。  相似文献   

10.
杨晨  李萍  梁廷明 《生命科学》2015,(2):151-160
细胞自噬(autophagy)在肿瘤的发生发展过程中扮演着非常重要的角色。自噬作用是细胞的一种自我保护机制,是真核细胞用于清除细胞内聚物及受损细胞器,进而维持细胞内稳态的一种蛋白质降解途径。从细胞自噬的类型及其形成,细胞自噬的分子调控机制,自噬对肿瘤发生及发展、以及治疗耐药等恶性行为的影响,肿瘤中自噬与预后的关联,干预自噬对肿瘤治疗的影响和细胞自噬的研究方法等方面进行综述,以期为肿瘤的治疗提供新思路。  相似文献   

11.
The mammalian target of rapamycin (mTOR) is a central regulator of many major cellular processes including protein and lipid synthesis and autophagy, and is also implicated in an increasing number of pathological conditions. Emerging evidence suggests that both mTOR and autophagy are critically involved in the pathogenesis of pulmonary diseases including acute lung injury (ALI). However, the detailed mechanisms of these pathways in disease pathogenesis require further investigations. In certain cases within the same disease, the functions of mTOR and autophagy may vary from different cell types and pathogens. Here we review recent advances about the basic machinery of mTOR and autophagy, and their roles in ALI. We further discuss and propose the likelihood of cell type- and pathogen-dependent functions of these pathways in ALI pathogenesis.  相似文献   

12.
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by germline mutations in TSC1 or TSC2 genes, which leads to the hyperactivation of the mTORC1 pathway, an important negative regulator of autophagy. This leads to the development of hamartomas in multiple organs. The variability in symptoms presents a challenge for the development of completely effective treatments for TSC. One option is the treatment with mTORC1 inhibitors, which are targeted to block cell growth and restore autophagy. However, the therapeutic effect of rapamycin seems to be more efficient in the early stages of hamartoma development, an effect that seems to be associated with the paradoxical role of autophagy in tumor establishment. Under normal conditions, autophagy is directly inhibited by mTORC1. In situations of bioenergetics stress, mTORC1 releases the Ulk1 complex and initiates the autophagy process. In this way, autophagy promotes the survival of established tumors by supplying metabolic precursors during nutrient deprivation; paradoxically, excessive autophagy has been associated with cell death in some situations. In spite of its paradoxical role, autophagy is an alternative therapeutic strategy that could be explored in TSC. This review compiles the findings related to autophagy and the new therapeutic strategies targeting this pathway in TSC.  相似文献   

13.
Several types of cellular stress induce expression of growth arrest and DNA damage protein 34 (Gadd34). Autophagy occurs under both basal conditions and conditions of stress, such as starvation. Gadd34 and autophagy are both induced under starvation conditions. In this study we found that starvation induced the expression of Gadd34, reduced mTOR activity, and induced autophagy in wild type mice, but not Gadd34 KO mice. Gadd34 bound to and dephosphorylated pTSC2 at Thr1462. Dephosphorylation of TSC2 during the starvation time period leads to the suppression of mTOR, which is a potent inhibitor of autophagy. We concluded that starvation-induced Gadd34 suppresses mTOR and, thereby, induces autophagy.  相似文献   

14.
Mammalian target of rapamycin (mTOR) is a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family and is a major regulator of translation, cell growth, and autophagy. mTOR exists in two distinct complexes, mTORC1 and mTORC2, that differ in their subunit composition. In this study, we identified KIAA0406 as a novel mTOR-interacting protein. Because it has sequence homology with Schizosaccharomyces pombe Tti1, we named it mammalian Tti1. Tti1 constitutively interacts with mTOR in both mTORC1 and mTORC2. Knockdown of Tti1 suppresses phosphorylation of both mTORC1 substrates (S6K1 and 4E-BP1) and an mTORC2 substrate (Akt) and also induces autophagy. S. pombe Tti1 binds to Tel2, a protein whose mammalian homolog was recently reported to regulate the stability of PIKKs. We confirmed that Tti1 binds to Tel2 also in mammalian cells, and Tti1 interacts with and stabilizes all six members of the PIKK family of proteins (mTOR, ATM, ATR, DNA-PKcs, SMG-1, and TRRAP). Furthermore, using immunoprecipitation and size-exclusion chromatography analyses, we found that knockdown of either Tti1 or Tel2 causes disassembly of mTORC1 and mTORC2. These results indicate that Tti1 and Tel2 are important not only for mTOR stability but also for assembly of the mTOR complexes to maintain their activities.  相似文献   

15.
16.
蒋倩  罗招阳  张志伟  陶菲 《现代生物医学进展》2013,13(14):2783-2785,2689
自噬是一个高度发达而且十分保守的生物学分解代谢过程。自噬与肿瘤的关系十分密切,在肿瘤发生发展的过程中,自噬活性的改变却是一把双刃剑。自噬,它既能够使肿瘤细胞耐受不同的应激条件而使其获得更好的生存,也可以通过各种信号途径减轻许多不良应激条件下的细胞损伤,如慢性炎症、慢性细胞死亡及基因组损伤等,从而而减少肿瘤的发生。再者,一方面,某些肿瘤的发生和发展过程中也同样依赖于自噬,并且肿瘤细胞可以利用自噬来对抗抗癌药物的一定的细胞毒性。而另一方面,有些癌症却需要利用自噬的作用来杀死肿瘤细胞。虽然自噬与肿瘤的关系是十分复杂的,也存在不少的分歧,但总的来说自噬在癌症中的作用是至关重要的。结合近年来国内外研究的发展,我们这篇综述重点讨论的是自噬在癌症中的作用,并且探讨其潜在的作用机制,以及目前自噬在癌症治疗中的应用。  相似文献   

17.
The activity of mammalian target of rapamycin (mTOR) complexes regulates essential cellular processes, such as growth, proliferation, or survival. Nutrients such as amino acids are important regulators of mTOR complex 1 (mTORC1) activation, thus affecting cell growth, protein synthesis, and autophagy. Here, we show that amino acids may also activate mTOR complex 2 (mTORC2). This activation is mediated by the activity of class I PI3K and of Akt. Amino acids induced a rapid phosphorylation of Akt at Thr-308 and Ser-473. Whereas both phosphorylations were dependent on the presence of mTOR, only Akt phosphorylation at Ser-473 was dependent on the presence of rictor, a specific component of mTORC2. Kinase assays confirmed mTORC2 activation by amino acids. This signaling was functional, as demonstrated by the phosphorylation of Akt substrate FOXO3a. Interestingly, using different starvation conditions, amino acids can selectively activate mTORC1 or mTORC2. These findings identify a new signaling pathway used by amino acids underscoring the crucial importance of these nutrients in cell metabolism and offering new mechanistic insights.  相似文献   

18.
Loss of Ostm1 leads to the most severe form of osteopetrosis in mice and humans. Because functional rescue of the osteopetrotic defect in these mice extended their lifespan from ∼3 weeks to 6 weeks, this unraveled a second essential role of Ostm1. We discovered that Ostm1 is highly expressed in the mouse brain in neurons, microglia, and astrocytes. At 3–4 weeks of age, mice with Ostm1 loss showed 3–10-fold stimulation of reactive gliosis, with an increased astrocyte cell population and microglia activation. This inflammatory response was associated with marked retinal photoreceptor degeneration and massive neuronal loss in the brain. Intracellular characterization of neurons revealed abnormal storage of carbohydrates, lipids, and ubiquitinated proteins, combined with marked accumulation of autophagosomes that causes frequent axonal swelling. Stimulation of autophagy was provided by specific markers and by significant down-regulation of the mammalian target of rapamycin signaling, identifying a cellular pathologic mechanism. A series of transgenic mouse lines specifically targeted to distinct central nervous system cell subpopulations determined that Ostm1 has a primary and autonomous role in neuronal homeostasis. Complete functional complementation demonstrated that the development of severe and rapid neurodegeneration in these mice is independent of the hematopoietic lineage and has clinical implications for treatment of osteopetrosis. Importantly, this study establishes a novel neurodegenerative mouse model critical for understanding the multistep pathogenic cascade of cellular autophagy disorders toward therapeutic strategy design.  相似文献   

19.
凋亡和自噬是参与维持机体正常的生理平衡和内环境稳定重要机制,与正常生长发育以及肿瘤等多种疾病发展过程都有着密切的联系。对于肿瘤的治疗,传统的方法是诱导肿瘤细胞凋亡,然而,肿瘤细胞中凋亡抗性的出现成为肿瘤治疗的主要障碍。近来,通过诱导其它细胞死亡方式致肿瘤细胞死亡已经成为有潜力的新的抗肿瘤机制。自噬作为另外一种细胞程序性死亡方式与凋亡一样有着复杂的分子机制和调控机制,它们之间存在密切的联系,并且存在许多相同的调节蛋白。本文就凋亡和自噬在形态特征、分子机制、检测方法以及在肿瘤治疗过程两者之间的关系做一综述。  相似文献   

20.
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号