首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixed in 13 provenances of Acacia albida and 11 isolines of Leucaena leucocephala inoculated with effective Rhizobium strains was measured by 15N techniques and the total N difference method. In the test soil, on the average, L. leucocephala derived about 65% of its total N from atmospheric N2 fixation compared to about 20% by A. albida. Significant differences in the percentage of N derived from atmospheric N2 (% Ndfa) occurred, between provenances or isolines within species. The % Ndfa ranged from 37 to 74% within L. leucocephala and from 6 to 37 within A. albida; (equivalent to 20–50 mg N plant–1 and 4–37 mg N plant–1 for the two species over three months, respectively) and was correlated with the nodule mass (r=0.91). The time course of N2 fixation of three selected provenances (low, intermediate and good fixers) was followed at 12 weekly intervals over a 36 week period. The % Ndfa of all provenances and isolines increased with time; and except for one of the L. leucocephala provenances, % Ndfa was similar within species at the 36 weeks harvest. There was a significant correlation between % Ndfa and the amount of N2 fixed (r=0.96). Significant interactions occurred between provenances and N treatments and often growth of uninoculated but N fertilized plants was less variable than for inoculated unfertilized plants.  相似文献   

2.
Pruning of hedgerow trees is an important management practice for the successful establishment of an alley cropping system. Although pruning affects biomass production, only meager evidence of this management on distribution of nutrients among the different plant organs after tree regrowth is available. This study examined the effect of pruning on the distribution and use efficiency of N and P in a N2 fixing leguminous tree species, Gliricidia sepium, and two non-N2 fixing leguminous tree species, Senna siamea and S. spectabilis, grown in a field on an Alfisol (low in P) at Fashola (Guinea Savanna Zone), Southwestern Nigeria. Four P rates, 0, 20, 40 and 80 kg P ha–1 as single superphosphate were used and management treatments included pruned versus unpruned plants. The 15N isotope dilution technique was used to measure N2 fixation in G. sepium. Partitioning of total P among different plant organs was influenced by plant species and pruning management, but was not affected by P application rates. The distribution of total P in the various plant organs followed that of dry matter yield while N partitioning had a different pattern. Pruned plants distributed about 118% more total P to branches and had a higher physiological P use efficiency (PPUE) than unpruned plants. Leaves were the biggest sink for total N and N allocation in the other plant organs was influenced by plant species and pruning management, G. sepium had relatively more of its total N and P partitioned into roots (about double that of the non-N2 fixing trees) but had a lower PPUE. Unpruned and pruned G. sepium derived 35 and 54% respectively of their total N from atmospheric N2, with about 54% of the fixed N2 being allocated to leaves and roots. Results showed that N and P pools turned over in the branches during plant regrowth after pruning but the causative factors associated with this phenomenon were not clear.  相似文献   

3.
Awonaike  K. O.  Danso  S. K. A.  Zapata  F. 《Plant and Soil》1993,155(1):325-328
In this study, an approach involving a double isotope (15N and 34S) labelling technique was used to examine which of five reference crops (Eucalyptus camaldulensis, Cassia siamea, Cassia spectabilis, Lolium perenne and Eucalyptus grandis) would be suitable for measuring N fixed by Gliricidia sepium and Leucaena leucocephala. The rationale is that the ratio of fertilizer-derived S to soil-derived S in a suitable reference crop is similar to that measured in the nitrogen fixing tree (NFT) since the N ratios in the two crop types cannot be measured directly. E. camaldulensis and E. grandis were found to be suitable reference crops because they absorbed fertilizer and soil S in the same ratio as G. sepium and L. leucocephala.  相似文献   

4.
The growth characteristics and total N content of the woody legume Leucaena leucocephala and the companion crop Sorghum bicolor grown in the greenhouse with N-limiting (NH4 + concentration = 447 mM) nutrient medium in sole and mixed cropping were examined. Plant height, dry weight, and total N content increased significantly in sorghum grown intercropped with nodulated Leucaena over the control, sole sorghum. Evidence is presented to indicate that in mixed culture, sorghum gains an average of 0.03 mg N day–1 plant–1 relative to sole-cropped sorghum in N-limiting sand culture. The gain in N content of intercropped sorghum, however, represented less than 1% of the N budget of N-fixing Leucaena and was inadequate to sustain normal physiological development of sorghum.  相似文献   

5.
Establishment of Leucaena leucocephala was poor at Ibadan (Transition forest-savanna zone) and Fashola (savanna zone, 70 km north of Ibadan) in southwestern Nigeria as a result of low soil fertility and the presence of only a few native rhizobia capable of nodulating it. Inoculation with L. leucocephala at these two locations in 1982 resulted in striking responses with Rhizobium strains IRc 1045 and IRc 1050 isolated from L. leucocephala grown in Nigeria. The persistence of inoculated effective Rhizobium strains after inoculation is desirable since it removes the need for reinoculation. Because of the perennial nature of L. leucocephala and its use in long-term alley farming experiments, we examined the persistence of inoculated rhizobial strains after inoculation, and their ability to sustain N2-fixation and biomass production at Ibadan. In 1992, ten years after Rhizobium introduction, uninoculated, L. leucocephala fixed about 150 kg N ha-1 yr-1 or about 41% of total plant N compared to 180 kg N ha-1 yr-1 or 43% measured in 1982. Serological typing of the nodules using the Enzyme-Linked-Immunosorbent Assay (ELISA) and intrinsic resistance to the streptomycin test revealed that most of the nodules (96%) formed on L. leucocephala in 1992 were by Rhizobium strains IRc 1045 and IRc 1050, which were inoculated in 1982. Nodules were absent on uninoculated L. leucocephala grown on the adjacent field with no history of L. leucocephala cultivation. We conclude that the N2 fixed by Rhizobium strains IRc 1045 and IRc 1050 persisted for many years in the absence of L. leucocephala and sustained effectively fixed N2 which growth and yield of L. leucocephala after several years, thus encouraging a possible low-input alley farming system by smallholder farmers in Nigeria.  相似文献   

6.
Seedlings of six temperate pasture species, three grasses and three legumes, were grown for 19–24 days in sterile agar or sand-vermiculite media, in the presence of inorganic phosphate (Pi), glucose 1-phosphate (G1P) or inositol hexaphosphate (IHP). Agar (pH 5.0) had a low IHP-sorbing capacity while IHP was almost completely sorbed in sand-vermiculite. Pi and G1P were relatively available in both media. Growth of each species was measured in relation to phosphorus (P) supply and levels of Pi supply at which shoot yields reached 90% of maximum yield (Pcrit) were determined. Pcrit values were generally higher for the legume species than for the grasses, and were six-fold higher for Trifolium subterraneum L. seedlings when grown in sand-vermiculite relative to agar. When supplied with G1P, seedlings of the six species grew as well as plants supplied with Pi. By contrast, IHP was a poor source of P for plant growth, even when supplied in agar at levels up to 40-fold greater than Pcrit. Using the growth of T. subterraneum in the presence of IHP, it was calculated that roots released approximately 0.09 nkat phytase g-1 root dry wt per day, over 20 days of growth. By supplementing agar containing IHP with phytase from Aspergillus niger (E.C. 3.1.3.8; 0.012 nkat plant-1, or 1.3 nkat g-1 root dry wt), sufficient P became available to enable T. subterraneum seedlings to grow as well as Pi-supplied plants. These results indicate that while pasture plants can quite effectively use P from some organic P sources (e.g. G1P), the acquisition of phytate-P is limited both by availability of substrate and the capacity of plant roots to hydrolyse available IHP. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
A greenhouse investigation was conducted to determine the effect of arbuscular mycorrhiza and drought on the growth of two tropical hedgerow legume trees (Gliricidia sepium and Leucaena leucocephala) under simulated eroded soil conditions. It was a factorial design with two levels of watering regime (adequate watering and drought), inoculation with Glomus deserticola (with and without), and two soil types (0-30 cm topsoil and 30-60 cm subsoil). Each treatment was replicated 3 times. After ten drought cycles, the growth of Gliricidia sepium in the subsoil was enhanced by mycorrhizal inoculation under both watering regimes whereas there was no significant contribution of mycorrhizal inoculation to the growth of L. leucocephala in both soil types under the two watering regimes. Drought stress significantly reduced most growth parameters for the two tree species in both soils with or without fungal inoculation. The N-fixing activity of Gliricidia sepium benefited from Glomus deserticola inoculation while that of L. leucocephala was not significantly affected in the topsoil. Mycorrhizal colonization was reduced for both tree species in the subsoil compared to the topsoil while it was significantly increased for both species in the subsoil when compared to the uninoculated subsoil counterpart. In the subsoil, inoculation of Gliricidia sepium with the mycorrhizal fungus increased root colonization by 89% and 73% under adequate watering and drought, respectively, whereas L. leucocephala had only a 38% and 42% increase in root colonization under comparative conditions in the subsoil. Thus Glomus deserticola inoculation may be beneficial to the growth of Gliricidia sepium in a badly eroded site where topsoil is missing.  相似文献   

8.
Pot experiments were conducted to assess the lime and phosphorus requirements ofLeucaena leucocephala (LAM.) De Wit grown on three acid soils (Ultisols) from southeastern Nigeria. Liming and phosphorus application significantly enhanced growth ofL. leucocephala. Ammakama soil showed best effect to phosphorus application, while acidity problems were more pronounced on Onne and Isienu soils. High lime rate (2000 ppm) reduced plant growth in Isienu soil probably due to nutrient imbalance. Potassium, manganese and zinc levels in the plants were reduced with increasing lime rates. On Onne and Isienu soils plant tops correlated better with total acidity and extractable Al+3 level than with soil pH-H2O.  相似文献   

9.
Leucaena leucocephala failed to nodulate effectively with promiscuous indigenous rhizobia with which Mucuna pruriens nodulated effectively. Mucuna pruriens was adequately established and well nodulated due to the presence of favourable climatic and edaphic factors which enhanced its establishment in the humid/moist savanna zone of Nigeria. The microsymbiont for M. pruriens seems to thrive more in an alkaline rhizosphere. Introduction of M. pruriens into the farming system in Nigeria may serve as a low input agricultural system, which is not only sustainable but also economically viable.  相似文献   

10.
Phosphorus is often limiting crop growth in soils low in P supplying capacity. The objective of this study was to investigate whether there are differences in P efficiency between sugar beet and wheat and to search for the plant properties responsible for different P efficiencies encountered and furthermore to see whether the kind of P binding in soil affects the P efficiency of crops. For this a pot experiment with an Oxisol with P mainly bound to Fe and Al (Fe/Al-P) and a Luvisol with P mainly bound to Ca (Ca-P) was run with increasing P fertilizer levels from 0 to 400 mg kg–1 in a climate chamber. Shoot dry weights of wheat and sugar beet increased strongly with P application in both soils. Both crops, despite their large differences in plant properties, had the same P efficiency in both soils. Therefore none of the species was especially able to use either Fe/Al-P or Ca-P. Wheat relied on a somewhat lower internal requirement, a large root system (high root/shoot ratio) and a low shoot growth rate with a low influx while sugar beet with a small root system and a large shoot growth rate relied on a 5 to 10 times higher influx. A mechanistic mathematical model for calculation of uptake and transport of nutrients in the rhizosphere was used to assess the influence of morphological and physiological root properties on P influx. A comparison of calculated and measured P influx showed that prediction by the model is reasonably accurate for Luvisol. For Oxisol, the predicted P influx was much less than the observed one, even when P influx by root hairs was considered. A sensitivity analysis showed that physiological uptake parameters like I max, K m, and CL min had no major influence on predicted influx. The greatest influence on influx had the P soil solution concentration C L i. It is assumed that both species had used mechanisms to increase P availability in the rhizosphere similar to an increase of C L i. Such mechanisms could be the exudation of organic acids, which are known as a sorption competitor to phosphate bound to Fe/Al-oxides or humic-Fe-(Al) complexes or to build soluble complexes with Fe and P. The close agreement between calculated and measured P influx in the Luvisol even at P deficiency indicates that root exudates were not able to mobilize Ca-bound P, whereas Fe/Al-P could be mobilized easily.  相似文献   

11.
Prolific differentiation of shoot buds of Leucaena leucocephala was induced from the different plant parts viz. cotyledon, hypocotyl and leaf. Adventitious shoot bud formation was recorded with prudent application of N6-2- (isopentenyl) adenosine and 15% (v/v) coconut water. Coconut water alone was unable to produce any beneficial effect with regard to the shoot bud proliferation but the response was augmented with the increase in concentration of N6-2- (isopentenyl) adenosine. However supra-optimal level of N6-2-(isopentenyl) adenosine was inhibitory. Best response was recorded from the cotyledon explant at 2 mg dm−3 N6-2-(isopentenyl) adenosine compared to the other two explants. Comparative assessment was undertaken following the same experimental protocol in liquid shake culture. The regenerated shoot buds were subcultured in plant growth regulator-free medium where leafy shoot emergence was recorded. Optimum regeneration of roots was observed in these shoots in presence of 1 mg dm−3 α-naphthalene acetic acid. Plantlets were finally hardened following standard procedures before transplantation to the field. In another experimental set up, the de-embryonated cotyledons regenerated shoot buds via callus formation. The regenerated shoots and plantlets obtained through callus mediated organogenesis could be used for rapid multiplication and also for the genetic improvement of individual clones of Leucaena leucocephala.  相似文献   

12.
This study evaluated the toxic effects of total petroleum hydrocarbons (TPH) on growth of the legumes Crotalaria incana L. and Leucaena leucocephala Lam., and on the development of nitrogen-fixing soil microorganisms, using biological toxicity indices and the toxicity potential index (TPIc), which enable comparison of effects of exposure time and concentration. Growth and biomass accumulation in both plant species decreased with high pollutant concentrations. The EC50 and the NOEC were not identified for either species. The Phytotoxicity Relative Index showed that root length was most strongly affected by the oil, and the Impact Index on Nitrogen Fixer Microorganisms indicated that, despite damage to the root system, L. leucocephala rhizosphere bacteria doubled at 10,000 mg kg−1 TPH after of 240 days of exposure. Finally, the TPIc revealed that C. incana was more sensitive than L. leucocephala to chronic TPH toxicity and might strongly depend on beneficial soil bacteria.  相似文献   

13.
A greenhouse study was undertaken to determine the nitrogen and phosphorus fertilization requirements for raising mycorrhizal seedlings in soil in containers. Seedlings of Leucaena leucocephala were grown for 40 days in dibble tubes containing fumigated or nonfumigated soil uninoculated or inoculated with Glomus aggregatum. The soil was fertilized with NH4NO3 solution to obtain 25–200 mg N kg-1 soil, and with a KH2PO4 solution to establish target soil solution P concentrations of 0.015–0.08 mg P l-1. At the end of 40 days, seedlings were transplanted into pots containing 5-kg portions of fumigated soil. Posttransplant vesicular arbuscular mycorrhizal fungal (VAMF) effectiveness, measured as pinnule P content, plant height, shoot dry weight and tissue N and P concentrations, was significantly increased by pretransplant VAMF colonization in both soils. The best posttransplant mycorrhizal colonization and mycorrhizal growth responses were observed if the nonfumigated pretransplant soil was amended with 50 mg N kg-1 soil and 0.04 mg P l-1 or if the fumigated pretransplant soil was amended with 100 mg N kg-1 soil and 0.04 mg P 1-1. There was no relationship between NP ratios of nutrients added to the pretransplant soil medium and shoot NP ratios observed after transplanting. Shoot NP ratio was also not correlated with root colonization level.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 4025  相似文献   

14.
Effects and interactions of varying CaSO4 and NaCl levels on growth and nitrogen fixation ofLeucaena leucocephala K8 were examined. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM) in randomized blocks with five replications. While NaCl significantly reduced plant growth, additions of CaSO4 increased plant height, leaf number, and biomass of salt treated plants. For the nonsaline treatments, high CaSO4 levels slightly depressed growth, which contradicts suggestions that Leucaena has a high calcium requirement. A significant calcium/sodium interaction was not seen for nodule number or weight. Nodule number was significantly depressed by 100 mM NaCl and nodule weight of the salt stressed plants significantly increased as CaSO4 concentration increased from 0.5 to 2.5 mM. Effects of NaCl and CaSO4 on nitrogen content of plant parts were inconclusive. The promotion of Leucaena salinity tolerance by addition of CaSO4 may be attributed to the effect of calcium in maintaing the selective permeability of membranes.  相似文献   

15.
Carbon disulfide (CS2) and carbonyl sulfide (COS) are colorless, foul-smelling, volatile sulfur compounds with biocidal properties. Some plants produce CS2 or COS or both. When used as an intercrop or forecrop, these plants may have agronomic potential in protecting other plants. Most of the factors which affect production of these plant-generated organic sulfides are unknown. We determined the effects of sulfate concentration, plant age, nitrogen fixation, drought stress, root injury (through cutting), and undisturbed growth on COS production in Leucaena retusa or Leucaena leucocephala and the effect of some of these factors on CS2 production in Mimosa pudica. In addition, we determined if organic sulfides were produced in all Leucaena species. When L. retusa and M. pudica seedlings were grown in a plant nutrient medium with different sulfate concentrations (50 to 450 mg SL-1), COS or CS2 from crushed roots generally increased with increasing sulfate concentration. COS production was highest (74 ng mg-1 dry root) for young L. retusa seedlings and declined to low amounts (<5 ng mg-1 dry root) for older seedlings. Nitrogen fixation reduced the amounts of COS or CS2 produced in L. leucocephala and M. pudica. Under conditions of undisturbed growth, root cutting, or drought stress, no COS production was detected in 4-to 8-weeks-old L. retusa plants. COS or CS2 or both was obtained from crushed roots or shoots of all 13 known Leucaena species.  相似文献   

16.
Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephalaMesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.  相似文献   

17.
Various organs of Leucaena leucocephala (Lam.) de Wit were analyzed for their levels of total nitrogen and free amino acids as well as for changes in free amino acid pools from the time of germination through nodulation. Also an assessment was made of the sink of fixed N2 (transport product) in the nodules using 15N methodology. L. leucocephala organs showed total nitrogen levels similar to those of other legumes. Asparagine was the most prevalent amino acid in the nodules and roots followed by glutamate and mimosine. Asparagine was the second most common amino acid in the leaves and stems, with mimosine being the most abundant. Strong correlations were found between the total plant levels of aspartate and glutamate, asparagine and NH4+, acetylene reduction and glutamate, and asparagine and plant age. Asparagine amino- and amide-N accounted for over 75% of the fixed 15N2 in nodules. It was concluded that L. leucocephala is an asparagine transporter of fixed N2 in the nodule.  相似文献   

18.
Abstract 1 Termites cause significant damage to maize and other crops in southern Africa. Several studies were conducted with the objective of determining the difference in termite damage to maize in various land use systems between monoculture maize, maize grown using traditional fallows and improved fallows. 2 In an experiment conducted at four sites on noncoppicing fallows, maize planted after Tephrosia candida 02971 fallows had lower termite damage compared with fully fertilized monoculture maize. However, the termite suppression was not low enough to warrant rotation of noncoppicing fallows for termite management.. 3 In four experiments comparing termite damage to maize grown in monoculture and in coppicing fallows, fully fertilized monoculture maize had a higher percentage of lodged plants compared with maize grown in pure Leucaena leucocephala, Gliricidia sepium and Acacia anguistissima fallows or in a mixture of A. anguistissima + Sesbania sesban or Tephrosia vogelii + S. sesban. 4 More than 50–75% of the variance in maize yield was explained by preseason inorganic nitrogen and termite damage. However, termite damage to maize was not influenced by inorganic nitrogen, which represents nitrogen readily available to maize. The decomposition rate of biomass (related to lignin + polyphenol to nitrogen ratio) and water retention under fallows also appeared to influence termite damage. 5 It is concluded that maize grown in L. leucocephala, G. sepium, A. anguistissima and S. sesban fallows suffers less termite damage and produces maize yields comparable with conventionally tilled and fully fertilized monoculture maize.  相似文献   

19.
The influence of vesicular-arbuscular mycorrhizal (VAM) fungi on rhizosphere mycoflora was studied together with the possible mechanism involved in this process. Six combinations of VAM fungi and phosphorus fertilizer treatments were applied to Leucaena leucocephala roots and quantitative and qualitative observations were made periodically of the rhizosphere mycoflora and constituents of root exudates. The results obtained indicate that the presence of specific mycoflora in the rhizosphere of mycrorrhizal roots is mediated through root exudates rather than being an outcome of improved P nutrition.  相似文献   

20.
  • Evidence is lacking regarding compatibility of pine bacteria as bio‐inoculants for crops. The diversity and abundance of rhizosphere bacteria of Pinus roxburghii has never been investigated with simultaneous application of culture‐dependent and culture‐independent techniques. The present study was aimed to isolate, characterise, check the bio‐inoculant potential of pine bacteria and assess rhizosphere bacterial diversity using culture‐independent advanced approaches.
  • Forty bacteria isolated from the rhizoplane of P. roxburghii growing in a cold climate at high altitude in Murree, were morphologically characterised; nine were identified by 16S rRNA sequence analyses and used in experiments. Diversity and abundance of the 16S rRNA gene and nif H gene in the rhizosphere was assessed by cloning, RFLP analysis, 454‐amplicon pyrosequencing and qPCR.
  • The bacterial isolates significantly improved dry weight of shoot, root, root area, IAA and GA3 content, number of grains plant?1, weight of grains plant?1 in wheat varieties Chakwal‐50 and Fareed‐06 under axenic and field conditions. The number of 16S rRNA sequences (2979) identified by pyrosequencing shared similarity with 13 phyla of bacteria and archaea.
  • The results confirm the existence of diverse bacteria of agricultural and industrial importance in the rhizosphere and compatibility of rhizoplane bacteria as bio‐inoculants for wheat varieties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号