首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genetic studies have provided remarkable clues to the causes of prostate cancer (PCa). For example, in addition to the expected role of androgens in facilitating the development of PCa, the possibility that infections might lead to prostate cancer has been raised with the identification of RNASEL and MSR1 as familial prostate cancer genes; that insight will profoundly affect future studies and may ultimately lead to new approaches to the prevention of prostate cancer. The identification of key molecular alterations in prostate cancer cells implicates carcinogen defenses, including GSTP1, growth factor signaling pathways (such as NKX3.1, PTEN and p27) and androgens as critical determinants of the phenotype of PCa cells and defines specific targets for detection, diagnosis and treatment of PCa.  相似文献   

3.
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.  相似文献   

4.
5.
Aging is one of the risk factors for the development of low-grade inflammation morbidities, such as several types of cancer and neurodegenerative diseases, due to changes in the metabolism, hormonal secretion, and immunosenescence. The senescence of the immune system leads to improper control of infections and tissue damage increasing age-related diseases. One of the mechanisms that maintain cellular homeostasis is autophagy, a cell-survival mechanism, and it has been proposed as one of the most powerful antiaging therapies. Regular exercise can reestablish autophagy, probably through AMP-activated protein kinase activation, and help in reducing the age-related senescence diseases. Therefore, in this study, we discuss the effects of exercise training in immunosenescence and autophagy, preventing the two main age-related disease, cancer and neurodegeneration.  相似文献   

6.
Prostate cancer (PCa) has a variable biological potential. It constitutes the second most common cancer amongst men worldwide and the fifth most common cancer in Saudi Arabia. Identifying men at higher risk of developing PCa, differentiating indolent from aggressive disease and predicting the likelihood of progression will improve decision-making and selection for active surveillance protocols. Biomarkers have been utilized for PCa screening and predicting cancer behavior and response to treatment. The prostate specific antigen (PSA) screening helps detect PCa in early stages, while implementing a plan for management and outcome. However, PSA screening is still controversial, due to the risks of over diagnosis and treatment, and its inability to detect a good proportion of advanced tumors. Alternatively, a new era of PCa biomarkers has emerged with higher PCa specificity than PSA and its isoforms hopefully improving screening methods, such as Prostate Health Index (PHI) score, Progensa Prostate Cancer Antigen 3 (PCA3), Mi-Prostate Score (MiPS), Prostate Stem Cell Antigen (PSCA), 4Kscore test, and Urokinase Plasminogen Activation (uPA and uPAR). Few novel biomarkers have shown promise in preliminary results. This review will display promising biomarkers including some important FDA approved ones, highlighting their clinical implication and future place in the PCa puzzle, along with addressing their current limitations.  相似文献   

7.
The role of carbohydrate-related pathways in a wide range of clinically significant diseases has provided great impetus for researchers to characterise key proteins as targets for drug discovery. Carbohydrate-recognising proteins essential in the lifecycles of high health impact pathogens and diseases such as diabetes, cancer, autoimmunity, inflammation and in-born errors of metabolism continue to stimulate much interest in both structure elucidation and structure-based drug design. For example, advances in structure-based inhibitor design against the mycobacterial enzyme UDP-galactopyranose mutase offer new hope in next generation anti-tuberculosis chemotherapeutics. The appearance of H5N1 avian influenza virus has re-stimulated much research on influenza virus haemagglutinin and sialidase. These latest developments on influenza virus sialidase have provided new opportunity for the development of Group 1-specific anti-influenza drugs. The role of siglecs and galectins in a range of disease processes such as inflammation, apoptosis and cancer progression has also inspired significant structure-based inhibitor design research.  相似文献   

8.
To identify appropriate candidates for aggressive treatment such as radical prostatectomy or radiation therapy of localized prostate cancer (PCa), novel predictive biomarkers of PCa aggressiveness are essential. Core2 β-1,6-N-acetylglucosaminyltransferase-1 (GCNT1) is a key enzyme that forms core 2-branched O-glycans. Its expression is associated with the progression of several cancers. We established a mouse IgG monoclonal antibody (mAb) against GCNT1 and examined the relationship of GCNT1 expression to the clinicopathological status of PCa. Paraffin-embedded PCa specimens were analyzed by immunohistochemistry for GCNT1 expression using a newly established mouse anti-GCNT1 mAb by ourselves. GCNT1-positive tumor showed significantly higher Gleason score and larger tumor volume. The number of GCNT1-positive cases was significantly lower in cases of organ-confined disease than in cases of extracapsular extension. GCNT1-negative tumors were associated with significantly better prostate-specific antigen (PSA)-free survival compared with GCNT1-positive tumors. Multivariate analysis revealed that detection of GCNT1 expression was an independent risk factor for PSA recurrence. We established new methods for GCNT1 detection from PCa specimens. Immunoblotting was used to examine post-digital rectal examination (DRE) urine from PCa patients. Over 90% of GCNT1-positive PCa patients with high concentrations of PSA showed extracapsular extension. In conclusion, GCNT1 expression closely associates with the aggressive potential of PCa. Further research aims to develop GCNT1 detection in post-DRE urine as a marker for PCa aggressiveness.  相似文献   

9.
Every year nearly 200,000 men in the United States are diagnosed with prostate cancer (PCa), and another 29,000 men succumb to the disease. Within certain regions of the world population based studies have identified a possible role for green tea in the prevention of certain cancers, especially PCa. One constituent in particular, epigallocatechin-3-gallate also known as EGCG has been shown in cell culture models to decrease cell viability and promote apoptosis in multiple cancer cell lines including PCa with no effect on non-cancerous cell lines. In addition, animal models have consistently shown that standardized green tea polyphenols when administered in drinking water delay the development and progression of PCa. Altogether, three clinical trials have been performed in PCa patients and suggest that green tea may have a distinct role as a chemopreventive agent. This review will present the available data for standardized green tea polyphenols in regard to PCa chemoprevention that will include epidemiological, mechanism based studies, safety, pharmacokinetics, and applicable clinical trials. The data that has been collected so far suggests that green tea may be a promising agent for PCa chemoprevention and further clinical trials of participants at risk of PCa or early stage PCa are warranted.  相似文献   

10.
Polo-like kinase (Plk) 1 as a target for prostate cancer management   总被引:1,自引:0,他引:1  
Reagan-Shaw S  Ahmad N 《IUBMB life》2005,57(10):677-682
Prostate cancer (PCa) is the most commonly occurring cancer in American men, next to skin cancer. Existing treatment options and surgical intervention are unable to effectively manage this cancer. Therefore, continuing efforts are ongoing to establish novel mechanism-based targets and strategies for its management. The serine/threonine kinases Polo-like kinase (Plk) 1 plays a key role in mitotic entry of proliferating cells and regulates many aspects of mitosis which are necessary for successful cytokinesis. Plk1 is over-expressed in many tumor types with aberrant elevation frequently constituting a prognostic indicator of poor disease outcome. This review discusses the studies which indicate that Plk1 could be an excellent target for the treatment as well as chemoprevention of prostate cancer.  相似文献   

11.
Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.  相似文献   

12.
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.  相似文献   

13.
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.  相似文献   

14.
Prostate cancer (PCa) is no exception to the multi-step process of metastasis. As PCa progresses, changes occur within the microenvironments of both the malignant cells and their targeted site of metastasis, enabling the necessary responses that result in successful translocation. The majority of patients with progressing prostate cancers develop skeletal metastases. Despite advancing efforts in early detection and management, there remains no effective, long-term cure for metastatic PCa. Therefore, the elucidation of the mechanism of PCa metastasis and preferential establishment of lesions in bone is an intensive area of investigation that promises to generate new targets for therapeutic intervention. This review will survey what is currently know concerning PCa interaction with the extracellular matrix (ECM) and the roles of factors within the tumor and ECM microenvironments that contribute to metastasis. These will be discussed within the context of changes in expression and functional heterodimerization patterns of integrins, changes in ECM expression and reorganization by proteases facilitating invasion. In this context we also provide a brief summary of how growth factors (GFs), cytokines and regulatory signaling pathways favor PCa metastasis to bone.  相似文献   

15.
With the rapid development of biomarkers and new technologies, large-scale biologically-based cohort studies present expanding opportunities for population-based research on disease etiology and early detection markers. The prostate, lung, colorectal and ovarian cancer (PLCO) screening trial is a large randomized trial designed to determine if screening for these cancers leads to mortality reduction for these diseases. Within the Trial, the PLCO etiology and early marker study (EEMS) identifies risk factors for cancer and other diseases and evaluates biologic markers for the early detection of disease. EEMS includes 155,000 volunteers who provide basic risk factor information. Serial blood samples are collected at each of six screening rounds (including one collection for cryopreserved whole blood) from screening arm participants (77,000 subjects) and buccal cells are collected from those in the control arm of the trial. Etiologic studies consider environmental (e.g., diet), biochemical, and genetic factors. Early detection studies focus on blood-based biologic markers of early disease. Clinical epidemiology is also an important component of the PLCO trial.  相似文献   

16.
延缓衰老相关的小分子物质研究进展   总被引:1,自引:0,他引:1  
筛选、研究具有延缓衰老作用的小分子物质,对于发现新的治疗衰老相关性疾病及肿瘤等的有效靶点、开发新型药物、促进人类健康具有重大的现实意义.同时更重要的是,可以这些小分子物质为切入点,对衰老、肿瘤等生命现象的具体分子机制进行深入研究,这对于分子生物学等相关生命科学研究的发展具有重要的推动作用.总结了近一二十年来发现的一些具有代表性的可延缓衰老的小分子物质,并重点论述了其作用的分子机制.  相似文献   

17.
18.
19.
Background:Prostate cancer (PCa) is the second leading cause of cancer death in American population. In this manner, novel therapeutic approaches for identification of therapeutic targets for PCa has significant clinical implications. Quercetin is a potent cancer therapeutic agent and dietary antioxidant present in fruit and vegetables.Methods:To investigate the underlying mechanism by which the PCa was regulated, nanoparticles of quercetin were administrated to cells. For in vitro experiments, human PCa cell line LNCaP were involved. Cell viability assay and quantitative RT-PCR (qRT-PCR) for hedgehog signaling pathway genes were used to determine the key signaling pathway regulated for PCa progression.Results:The cell viability gradually decreased with increased concentration of quercetin nanoparticles. At 48 h, 40 mM concentration of quercetin treatment showed near 50% of viable cells. Quercetin nanoparticles upregulates Su(Fu) mRNA expressions and downregulates gli mRNA expressions in the LNCaP cells.Conclusion:The results showed that the hedgehog signaling targeted inhibition may have important implications of PCa therapeutics. Additionally, the outcomes provided new mechanistic basis for further examination of quercetin nanoparticles to discover potential treatment strategies and new targets for PCa inhibition.Key Words: Hedgehog, Prostate cancer, Proliferation, Quercetin nanoparticles, Signaling pathway  相似文献   

20.
This short review establishes the conceptual bases and discusses the principal aspects of P4-shorthand for predictive, preventive, personalized and participatory medicine-medicine, in the framework of infectious diseases. P4 medicine is a new way to approach medical care; instead of acting when the patient is sick, physicians will be able to detect early warnings of disease to take early action. Furthermore, people might even be able to adjust their lifestyles to prevent disease. P4 medicine is fuelled by systems approaches to disease, including methods for personalized genome sequencing and new computational techniques for building dynamic disease predictive networks from massive amounts of data from a variety of OMICs. An excellent example of the effectiveness of the P4 medicine approach is the change in cancer treatments. Emphasis is placed on early detection, followed by genotyping of the patient to use the most adequate treatment according to the genetic background. Cardiovascular diseases and perhaps even neurodegenerative disorders will be the next targets for P4 medicine. The application of P4 medicine to infectious diseases is still in its infancy, but is a promising field that will provide much benefit to both the patients and the health-care system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号