首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system.

Results

With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region.

Conclusions

With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.  相似文献   

3.
4.
5.
6.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

7.
8.
The role of gene body methylation, which represents a major part of methylation in DNA, remains mostly unknown. Evidence based on the CpG distribution associates its presence with nucleosome positioning and alternative splicing. Recently, it was also shown that cytosine methylation influences splicing. However, to date, there is no methylation-based data on the association of methylation with alternative splicing and the distribution in exonic splicing enhancers (ESEs). We presently report that, based on the computational analysis of the Human Epigenome Project data, CpG hypermethylation (>80%) is frequent in alternatively spliced sites (particularly in noncanonical) but not in alternate promoters. The methylation frequency increases in sequences containing multiple putative ESEs. However, significant differences in the extent of methylation are observed among different ESEs. Specifically, moderate levels of methylation, ranging from 20% to 80%, are frequent in SRp55-binding elements, which are associated with response to extracellular conditions, but not in SF2/ASF, primarily responsible for alternative splicing, or in CpG islands. Finally, methylation is more frequent in the presence of AT repeats and CpGs separated by 10 nucleotides and lower in adjacent CpGs, probably indicating its dependence on helical formations and on the presence of nucleosome positioning-related sequences. In conclusion, our results show the regulation of methylation in ESEs and support its involvement in alternative splicing.  相似文献   

9.
CpG islands are GC-rich regions located in the promoter regions of housekeeping genes and many tissue-specific genes. While most CpG islands are normally unmethylated, island methylation can occur and is associated with silencing of the corresponding gene. Experiments with transgenic mice and DNA transfection in pluripotential embryonic cells have led to the conclusion that the information required for protecting the islands from methylation is contained within the CpG islands themselves and have identified Sp1 binding sites as an important element in establishing and/or maintaining the methylation-free state of CpG islands. To examine the generality of these observations, we analyzed the methylation of one of the mouse Igf2 CpG islands and its flanks in transgenic mice. We observed that the undermethylated state of this region is dependent on the presence of a separate cis-regulatory element, the H19 enhancers. These tissue-specific enhancers had a ubiquitous, non-tissue-specific effect on island region methylation. Structural alterations outside of the island and these enhancers also affected this region's methylation. These findings indicate that the methylation of some CpG island-containing regions is more sensitive than previously believed to the activity of distant cis-regulatory elements and to structural alterations in nonisland sequences in cis.  相似文献   

10.
11.

Background  

Although eukaryotic genomes are generally thought to be entirely chromatin-associated, the activated PHO5 promoter in yeast is largely devoid of nucleosomes. We systematically evaluated nucleosome occupancy in yeast promoters by immunoprecipitating nucleosomal DNA and quantifying enrichment by microarrays.  相似文献   

12.
Tissue-specific methylation of a CpG island in transgenic mice.   总被引:2,自引:0,他引:2  
G Gundersen  A B Kolst?  F Larsen  H Prydz 《Gene》1992,113(2):207-214
Clustering of CpG dinucleotides in CpG-rich islands is a characteristic feature of mammalian genomes. Such CpG islands are frequently associated with genes and usually hypomethylated, regardless of the gene activity. This is the case for the CpG island of the murine Thy-1 gene. A transgenic line containing multiple copies of a truncated, concatemeric CpG island from the Thy-1.1 allele (Thy-1.2 background) showed that a stable fraction (approx. 0.20) became fully methylated in somatic tissues of homozygous mice with respect to testable restriction sites, while the remaining copies were methylation-free, i.e., this methylation appears to be an 'all-or-none' phenomenon. DNA from extraembryonic tissues (placenta and yolk sac) and epididymal sperm showed, however, an even higher degree of methylation in two distinct patterns. In the extraembryonic tissue, partial methylation of each copy was seen, whereas in sperm a high degree of 'all-or-none' methylation (greater than 0.35) was observed.  相似文献   

13.
14.
To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale.  相似文献   

15.
16.
17.

Background

Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues.

Results

We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained.

Conclusions

Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号