首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The objective of the present study was to test the hypothesis that in neonatal piglets there would be no hypoventilation after sham denervation or aortic denervation (AOD) alone, but there would be transient hypoventilation after carotid body denervation (CBD) and the hypoventilation would be greatest after combined carotid and aortic denervation (CBD+AOD). There was a significant (P < 0.05) hypoventilation in CBD and CBD+AOD piglets denervated at 5, 15, and 25 days of age. The hypoventilation in CBD+AOD piglets denervated at 5 days of age was greater (P < 0.05) than that of all other groups. Conversely, sham-denervated and AOD piglets did not hypoventilate after denervation. Injections of sodium cyanide showed that aortic chemoreceptors were a site of recovery of peripheral chemosensitivity after CBD. This aortic sodium cyanide response was abolished by prior injection of a serotonin 5a receptor blocker. Residual peripheral chemosensitivity after CBD+AOD was localized to the left ventricle. We conclude that 1) aortic chemoreceptors contribute to eupneic breathing in piglets that were carotid denervated at 5 days of age and 2) there are multiple sites of residual peripheral chemosensitivity after CBD.  相似文献   

2.
The purpose of these studies was to test the hypothesis that carotid chemoreceptor activity is necessary for postnatal maturation of the ventilatory control system. By using a lateral surgical access, 17 piglets were carotid body denervated (CBD) and 14 were sham denervated at 3-25 days of age. After surgery, there was no irregular breathing in any group. There was no significant hypoventilation when CBD was performed at less than 5 days of age (n = 5) and only a mild (arterial PCO(2) 5 Torr; P < 0.05) to moderate, transient (arterial PCO(2) 8 Torr; P < 0.5) hypoventilation in piglets denervated at 10-15 (n = 6) and 20-25 (n = 6) days of age, respectively. Three weeks after surgery, both breathing of a hypoxic gas mixture and jugular venous NaCN injections elicited a hyperpnea in the CBD piglets that was attenuated compared with that in sham CBD piglets. In the CBD piglets, there was no response to injections of NaCN in the carotid arteries, but there was a response to NaCN injected into the proximal descending aorta, suggesting the residual peripheral chemosensitivity was of aortic origin. Carotid chemoreceptor-intact piglets had carotid and aortic NaCN chemosensitivity by 2 days of age. The carotid response persisted for the 40 days of the study, but the aortic reflex persisted only until approximately 8 days of age. We conclude that 1) the major effect of CBD per se in neonatal piglets is age-dependent hypoventilation and 2) there is a high degree of plasticity in peripheral chemosensitivity in neonates that may contribute to minimizing the changes in breathing after CBD.  相似文献   

3.
The role of the peripheral chemoreceptors in the control of fetal breathing movements has not been fully defined. To determine whether denervation of the peripheral chemoreceptors affects fetal breathing movements, we studied 14 chronically catheterized fetal sheep from 120 to 138 days of gestation. In seven fetuses the chemoreceptors were denervated by bilateral section of the vagus and carotid sinus nerves; in seven others, sham operations were performed. We compared several variables during two study periods: 0-5 and 6-13 days after operation. In the denervated fetuses there were significant decreases in the incidence and amplitude of fetal breathing movements during both study periods. There were no differences between the two groups in incidence of low-voltage electrocortical activity, arterial pH and blood gas tensions, fetal heart rate, mean arterial blood pressure, or duration of survival after operation or birth weight. We conclude that denervation of the peripheral chemoreceptors decreases fetal breathing movements. These results indicate that the peripheral chemoreceptors are active during fetal life and participate in the control of fetal breathing movements.  相似文献   

4.
5.
Recently, Wong et al. (Wong KA, Bano A, Rigaux A, Wang B, Bharadwaj B, Schurch S, Green F, Remmers JE, and Hasan SU, J Appl Physiol 85: 849-859, 1998) demonstrated that fetal lambs that have undergone vagal denervation prenatally do not establish adequate alveolar ventilation shortly after birth. In their study, however, vagal denervation was performed prenatally and the deleterious effects of vagal denervation on breathing patterns and gas exchange could have resulted from the prenatal actions of the neurotomy. To quantify the relative roles of pre- vs. postnatal vagal denervation on control of breathing, we studied 14 newborn lambs; 6 were sham operated, and 8 were vagally denervated below the origin of the recurrent laryngeal nerve. Postoperatively, all denervated animals became hypoxemic and seven of eight succumbed to respiratory failure. In vagally denervated lambs, expiratory time increased, whereas respiratory rate, minute ventilation, and lung compliance decreased compared with the sham-operated animals. In the early postoperative period, the frequency of augmented breaths was lower but gradually increased over time in the denervated vs. sham-operated group. The dynamic functional residual capacity was significantly higher than the passive functional residual capacity among the sham-operated group compared with the denervated group. No significant differences were observed in the prevalence of various sleep states and in the amount of total phospholipids or large- and small-aggregate surfactants between the two groups. We provide new evidence indicating that intrauterine actions of denervation are not required to explain the effects of vagal denervation on postnatal survival. Our data suggest that vagal input is critical in the maintenance of normal breathing patterns, end-expiratory lung volume, and gas exchange during the early neonatal period.  相似文献   

6.
The role of the sinoaortic reflexes in the regulation of ventilation during exercise was evaluated in seven awake dogs prepared with chronic tracheostomies and arterial catheters. Each dog ran on a treadmill at several work loads before and after sinoaortic denervation and served as its own control. Minute ventilation in the sinoaortic denervated state was significantly reduced from intact values by 10-40% at the mild and moderate levels of exercise [O2 uptake (VO2) = 30-50 ml . kg-1 . min-1] mainly as a result of a lowering respiratory frequency. At higher work loads (VO2 = 70-80 ml . kg-1 . min-1) minute ventilation was similar in the intact and denervated states, but the pattern of ventilation was altered with a higher frequency and a lower tidal volume in the denervated state. The rise in ventilation toward a stable plateau was slower at all work loads in the denervated than in the intact state. After sinoaortic denervation, arterial PCO2(PaCO2) levels were significantly elevated above intact PaCO2 levels during both the preexercise period and the steady state at all exercise levels. These results suggest that the sinoaortic reflexes contribute to both the control of ventilation and the pattern of breathing during mild and heavy levels of exercise in the conscious dog.  相似文献   

7.
Hypoxia stimulates ventilation, but when it is sustained, a decline in the ventilatory response is seen. The mechanism responsible for this decline lies within the CNS, but still remains unknown. In this study, we attempted to elucidate the possible role of hypoxia-induced depression of respiratory neurons by comparing the ventilatory response to hypoxia in intact rats and those with denervated carotid bodies. A whole-body plethysmograph was used to measure tidal volume, frequency of breathing and minute ventilation (VE) in awake and anesthetized intact rats and rats after carotid body denervation during exposure to hypoxia (FIO2 0.1). Fifteen-minute hypoxia induced an initial increase of VE in intact rats (to 248% of control ventilation in awake and to 227% in anesthetized rats) followed by a consistent decline (to 207% and 196% of control VE, respectively). Rats with denervated carotid bodies responded with a smaller increase in VE (to 134% in awake and 114% in anesthetized animals), but without a secondary decline (145% and 129% of control VE in the 15th min of hypoxia). These results suggest that afferentation from the carotid bodies and/or the substantial increase in ventilation are crucial for the biphasicity of the ventilatory response to sustained hypoxia and that a central hypoxic depression cannot fully explain the secondary decline in VE.  相似文献   

8.
We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The contribution of the carotid body chemoreceptor to postnatal maturation of breathing was evaluated in lambs from 7 to 70 days of age. The study was conducted by comparing the eupneic ventilation and resting pneumograms in intact conscious lambs with those of lambs that were carotid body chemodenervated (CBD) at birth. In comparison to the 1-wk-old intact lambs, the CBD lambs had significant decreases in minute ventilation (VE, 313 vs. 517 ml/kg), tidal volume (VT, 7.2 vs. 10.5 ml/kg), respiratory rate (f, 44 vs. 51 breaths/min), and occlusion pressure (P0.1, 2.8 vs. 7.2 cmH2O). Arterial PO2's were 59 vs. 75 Torr (P less than 0.05) and arterial PCO2's 47 vs. 36 Torr (P less than 0.05), respectively, in CBD and intact lambs. In intact lambs from 7 to 70 days, resting VE decreased progressively from 517 to 274 ml/kg (P less than 0.01) due to a fall in VT, mean inspiratory flow (VT/TI), and f, whereas the ratio of inspiratory time to total breath duration remained constant. P0.1 decreased from 7.2 to 3.9 cmH2O from 7 to 42 days. In contrast the CBD lambs experienced only minimal changes in VE, VT, VT/TI, and f during the same period. VE only decreased from 313 to 218 and P0.1 from 2.8 to 2.4 cmH2O. In contrast to that of intact lambs the resting pneumogram of CBD lambs remained relatively fixed from 7 to 70 days. Three CBD lambs died unexpectedly, without apparent cause, in the 4th and 5th wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We examined the effects of carotid body denervation (CX, n = 9), CX + aortic nerve section (CAX, n = 9), and sham surgery (SHAM, n = 7) on cardiorespiratory and metabolic function in young piglets (less than 9 days). For comparison, 1-mo-old pigs were also studied. Studies were performed 1 day after surgery, during which time ventilation (barometric plethysmography), heart rate, blood pressure, arterial blood gases, and electroencephalogram were recorded under normoxia. CX and CAX piglets hypoventilated (arterial PCO2 = 47.1 +/- 2.6 and 45.4 +/- 3.1 Torr, respectively) compared with SHAM piglets (arterial PCO2 = 36.4 +/- 1.5 Torr). CX piglets had an average of 8.0 +/- 3.0 apneas/h, lasting, on average, 26 +/- 3 s. CAX piglets averaged 17.2 +/- 7.9 apneas/h, lasting 30 +/- 5 s. Such long apneas were never observed in SHAM animals. Mean heart rate and blood pressure in denervated piglets were not significantly different from those in SHAM piglets. In animals followed up poststudy, significantly high mortality was observed in CX (5 of 9) and CAX (6 of 9) piglets by 7 days after surgery but not in SHAM animals (0 of 7) despite identical environmental and feed conditions (P less than 0.05; chi 2). One-month-old denervated animals showed periodic breathing and hypoventilation, but none died. These results suggest that in the newborn piglet 1) peripheral chemoreceptors have an active role in maintaining normal ventilation and avoidance of prolonged apnea and 2) survivability in early life is critically dependent on peripheral chemoreceptors.  相似文献   

11.
Chronic sympathetic denervation of the pineal gland by bilateral removal of the superior cervical ganglia (SCG) was performed on female rats 30 days before impregnation. The offspring, maintained in the dark from birth, had disruption of the malate dehydrogenase circadian rhythm in the testes at 25 days of age. A daily injection of melatonin (1 mg/kg s.c. at 10:00 or 18:00 h) to denervated mothers from the 14th day of pregnancy up to the 10th day postpartum produced one daily phase in the enzyme activity of testes in the offspring. Entrainment of daily enzyme activity also was obtained when the hormone was administered orally to the pups during the postnatal period or when pups were reared by intact (not denervated) foster mothers. The results indicate the involvement of the maternal pineal gland in the maternal transfer of photoperiodic information necessary for the coordination of the circadian system in young rats.  相似文献   

12.
Chronic sympathetic denervation of the pineal gland by bilateral removal of the superior cervical ganglia (SCG) was performed on female rats 30 days before impregnation. The offspring, maintained in the dark from birth, had disruption of the malate dehydrogenase circadian rhythm in the testes at 25 days of age. A daily injection of melatonin (1 mg/kg s.c. at 10:00 or 18:00 h) to denervated mothers from the 14th day of pregnancy up to the 10th day postpartum produced one daily phase in the enzyme activity of testes in the offspring. Entrainment of daily enzyme activity also was obtained when the hormone was administered orally to the pups during the postnatal period or when pups were reared by intact (not denervated) foster mothers. The results indicate the involvement of the maternal pineal gland in the maternal transfer of photoperiodic information necessary for the coordination of the circadian system in young rats.  相似文献   

13.
We have described a rat model that responds to repetitive episodic hypoxia (12-s infusions of nitrogen into daytime sleeping chambers every 30 s, 7 h/day for 35 days) with an increase in diurnal systemic blood pressure. We hypothesized that afferent information from the peripheral chemoreceptors may be necessary to produce diurnal blood pressure elevation in this hypoxia model. Carotid body denervation (CBD) was accomplished by severing both carotid sinus nerves in two groups of male Wistar rats (250-375 g). Group 4 CBD rats were subjected to intermittent hypoxia for 35 days (3-5% nadir ambient O2) as described above, whereas group 5 CBD rats remained unhandled in their usual cages. Additional sham-operated controls included group 2 sham-"hypoxia" rats, which were housed in chambers identical to the hypoxia rats but supplied with compressed air instead of nitrogen, group 1 (not denervated) rats, which remained unhandled in their usual cages, and group 3 sham-operated rats, which were subjected to 35 days of intermittent hypoxia identical to group 4 CBD rats. Femoral arterial baseline and end-of-study blood pressures were measured in conscious rats. The group 3 rats exposed to episodic hypoxia displayed a 13-mmHg increase in mean blood pressure, whereas the other groups showed no significant change from baseline. Left ventricular hypertrophy was evident in all rats exposed to episodic hypoxia, but right ventricular hypertrophy was evident only in the group 4 rats. All CBD rats developed increased hematocrit and hemoglobin, while the group 3 rats (non-CBD, episodic hypoxia) did not. The baroreceptor reflex at baseline was not depressed in the CBD rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Changes in local brain stem perfusion that alter extracellular fluid Pco2 and/or [H+] near central chemoreceptors may contribute to the decrease in respiration observed during hypoxia after peripheral chemoreceptor denervation and to the delayed decrease observed during hypoxia in the newborn. In this study, we measured the changes in respiration and brain stem blood flow (BBF) during 2-4 min of hypoxic hypoxia in both intact and denervated piglets and calculated the changes in brain stem Pco2 and [H+] that would be expected to occur as a result of the changes in BBF. All animals were anesthetized, spontaneously breathing, and between 2 and 7 days of age. Respiratory and other variables were measured before and during hypoxia in all animals, and BBF (microspheres) was measured in a subgroup of intact and denervated animals at 0, 30, and 260 s and at 0 and 80 s, respectively. During hypoxia, minute ventilation increased and then decreased (biphasic response) in the intact animals but decreased only in the denervated animals. BBF increased in a near linear fashion, and calculated brain stem extracellular fluid Pco2 and [H+] decreased over the first 80 s both before and after denervation. We speculate that a rapid increase in BBF during acute hypoxia decreases brain stem extracellular fluid Pco2 and [H+], which, in turn, negatively modulate the increase in respiratory drive produced by peripheral chemoreceptor input to the central respiratory generator.  相似文献   

15.
Carotid body-denervated (CBD) ponies have a less than normal increase in arterial PCO2 (PaCO2) when inspired CO2 (PICO2) is increased, even when pulmonary ventilation (VE) and breathing frequency (f) are normal. We studied six tracheostomized ponies to determine whether this change 1) might be due to increased alveolar ventilation (VA) secondary to a reduction in upper airway dead space (VD) or 2) is dependent on an upper airway sensory mechanism. Three normal and three chronic CBD ponies were studied while they were breathing room air and at 14, 28, and 42 Torr PICO2. While the ponies were breathing room air, physiological VD was 483 and 255 ml during nares breathing (NBr) and tracheostomy breathing (TBr), respectively. However, at elevated PICO2, mixed expired PCO2 often exceeded PaCO2; thus we were unable to calculate physiological VD using the Bohr equation. At all PICO2 in normal ponies, PaCO2 was approximately 0.3 Torr greater during NBr than during TBr (P less than 0.05). In CBD ponies this NBr-TBr difference was only evident while breathing room air and at 28 Torr PICO2. At each elevated PICO2 during both NBr and TBr, the increase in PaCO2 above control was always less in CBD ponies than in normal ponies (P less than 0.01). The VE-PaCO2, f-PaCO2, and tidal volume-PaCO2 relationships did not differ between NBr and TBr (P greater than 0.10) nor did they differ between normal and CBD ponies (P greater than 0.10). We conclude that the attenuated increase in PaCO2 during CO2 inhalation after CBD is not due to a relative increase in VA secondary to reducing upper airway VD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Increases in brain stem blood flow (BBF) during hypoxia may decrease tissue PCO2/[H+], causing minute ventilation (VE) to decrease. To determine whether an increase in BBF, isolated from changes in arterial PO2 and PCO2, can affect respiration, we obstructed the thoracic aorta with a balloon in 31 intact and 24 peripherally chemobarodenervated, anesthetized, spontaneously breathing newborn piglets. Continuous measurements of cardiorespiratory variables were made before and during 2 min of aortic obstruction. Radiolabeled microspheres were used to measure BBF before and approximately 30 s after balloon inflation in eight intact and five denervated animals. After balloon inflation, there was a rapid increase in mean blood pressure in both the intact and denervated animals, followed within 10 s by a decrease in tidal volume and VE. In the intact animals, the decrease in VE after acute hypertension can be ascribed to a baroreceptor-mediated reflex. After peripheral chemobarodenervation, however, acute hypertension continued to produce a decrease in VE, which cannot be explained by baroreceptor stimulation. In these denervated animals, aortic balloon inflation was associated with an increase in BBF (13.1 +/- 2.7%; P less than 0.05). We speculate that the increase in BBF during hypoxia may contribute to the decrease in ventilation observed after carotid body denervation.  相似文献   

17.
18.
Importance of vagal afferents in determining ventilation in newborn rats   总被引:3,自引:0,他引:3  
We studied the effect of acute bilateral vagotomy on ventilation and ventilatory pattern in rats. In 1- to 6-day-old unanesthetized rats, vagotomy resulted in a substantial decrease (38%) in ventilation during air breathing. After vagotomy there was a threefold increase in tidal volume (VT), inspiratory time (TI) doubled, and expiratory time (TE) was six times longer. When studied under isoflurane anesthesia, newborn rats showed decreases in ventilation similar to that observed without anesthesia, whereas anesthetized adult rats had no consistent changes in ventilation. Adult and newborn rats had nearly identical proportionate increases in VT and TI after vagotomy, but TE lengthened to a greater extent in the newborns. Additionally, we demonstrated a significant decrease in ventilation when 100% O2 rather than air was supplied to nonvagotomized unanesthetized newborn rats. Ventilation decreased by 19% after vagotomy under hyperoxic conditions. We conclude that vagal afferent input, probably of pulmonary mechanoreceptor origin, provides positive feedback to respiration in newborn rats and that newborn rats greater than 24 h old also have a degree of peripheral chemoreceptor drive during air breathing.  相似文献   

19.
In this study we have evaluated the role of the peripheral chemoreceptors in the ventilatory response to caffeine at a dose currently used in human infants for treatment of central apneas (10 mg/kg). Twelve lambs were studied; six had carotid body denervation (CBD) and six had a sham denervation (intact). The denervation was done the 2nd wk of life, and the study of the response to caffeine infusion was carried out at a mean age of 82 days. The awake and nonsedated animals received 10 mg/kg of caffeine, and caffeine blood levels were, respectively, 8.8 and 9.0 mg/l in the intact and in the CBD lambs. The intact lambs responded to caffeine by a significant immediate increase in minute ventilation (VE) of 46% from 274 to 400 ml X min-1 X kg-1 (P less than 0.001), 1 min after caffeine infusion. This response rapidly faded, but VE was still increased at 2 h, 314 ml X min-1 X kg-1. The increase in ventilation was brought about by a change in mean inspiratory flow (VT/TI), which increased from 9.9 to 14.0 ml X s-1 X kg-1 within 1 min (P less than 0.01); VT/TI was still increased at 11.2 ml X s-1 X kg-1 2 h later. In contrast, for the CBD lambs there was no response to caffeine infusion as measured by VE or VT/TI. We conclude that bolus caffeine infusion produces a rapid response in VE followed by a fall in VE that remained above base line until at least 2 h postinfusion, and the intact chemoreceptor function appears as an essential mediator for these increases in ventilation, since the peripheral chemodenervation has completely abolished the VE response to this particular dose of caffeine.  相似文献   

20.
Summary The ultrastructure of Pacinian corpuscles located on the crural interosseous membrane was studied in adult rats 6 h to 10 months after transection of the right sciatic nerve. Axon terminals degenerated one day after transection and were engulfed and resorbed by cells of the inner core within one week. The axial space left after removal of the axonal debris was closed by the lamellae of the inner core. The main structural features of the inner core and capsule remained preserved after denervation throughout the period of study. The denervated inner cores, however, became atrophic 10 months after neurotomy, their mean diameter being reduced by 17.5% compared with that of contralateral control corpuscles. The number of capsular lamellae was unaltered, and perineurial pathways of the peripheral nerve stump remained preserved. Schwann cells proliferated and formed Büngner bands during the first month after denervation, but retracted their processes and became atrophic at later stages after neurotomy.Survival of Pacinian corpuscles after long-term denervation in adult rats is in contrast to their rapid degeneration within several days after nerve section in neonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号