首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-10 is a predominantly anti-inflammatory cytokine that inhibits macrophage and dendritic cell function, but can acquire proinflammatory activity during immune responses. We investigated whether type I IFNs, which are elevated during infections and in autoimmune diseases, modulate the activity of IL-10. Priming of primary human macrophages with low concentrations of IFN-alpha diminished the ability of IL-10 to suppress TNF-alpha production. IFN-alpha conferred a proinflammatory gain of function on IL-10, leading to IL-10 activation of expression of IFN-gamma-inducible, STAT1-dependent genes such as IFN regulatory factor 1, IFN-gamma-inducible protein-10 (CXCL10), and monokine induced by IFN-gamma (CXCL9). IFN-alpha priming resulted in greatly enhanced STAT1 activation in response to IL-10, and STAT1 was required for IL-10 activation of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma expression in IFN-alpha-primed cells. In control, unprimed cells, IL-10 activation of STAT1 was suppressed by constitutive activity of protein kinase C and Src homology 2 domain-containing phosphatase 1. These results demonstrate that type I IFNs regulate the balance between IL-10 anti- and proinflammatory activity, and provide insight into molecular mechanisms that regulate IL-10 function. Gain of IL-10 proinflammatory functions may contribute to its pathogenic role in autoimmune diseases characterized by elevated type I IFN levels, such as systemic lupus erythematosus.  相似文献   

3.
General nature of the STAT3-activated anti-inflammatory response   总被引:5,自引:0,他引:5  
Although many cytokine receptors generate their signals via the STAT3 pathway, the IL-10R appears unique in promoting a potent anti-inflammatory response (AIR) via STAT3 to antagonize proinflammatory signals that activate the innate immune response. We found that heterologous cytokine receptor systems that activate STAT3 but are naturally refractory (the IL-22R), or engineered to be refractory (the IL-6, leptin, and erythropoietin receptors), to suppressor of cytokine signaling-3-mediated inhibition activate an AIR indistinguishable from IL-10. We conclude that the AIR is a generic cytokine signaling pathway dependent on STAT3 but not unique to the IL-10R.  相似文献   

4.
The ability of IFN-β to induce IL-10 production from innate immune cells is important for its anti-inflammatory properties and is believed to contribute to its therapeutic value in treating multiple sclerosis patients. In this study, we identified that IFN-β stimulates IL-10 production by activating the JAK1- and PI3K-signaling pathways. JAK1 activity was required for IFN-β to activate PI3K and Akt1 that resulted in repression of glycogen synthase kinase 3 (GSK3)-β activity. IFN-β-mediated suppression of GSK3-β promoted IL-10, because IL-10 production by IFN-β-stimulated dendritic cells (DC) expressing an active GSK3-β knockin was severely reduced, whereas pharmacological or genetic inhibition of GSK3-β augmented IL-10 production. IFN-β increased the phosphorylated levels of CREB and STAT3 but only CREB levels were affected by PI3K. Also, a knockdown in CREB, but not STAT3, affected the capacity of IFN-β to induce IL-10 from DC. IL-10 production by IFN-β-stimulated DC was shown to suppress IFN-γ and IL-17 production by myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, and this IL-10-dependent anti-inflammatory effect was enhanced by directly targeting GSK3 in DC. These findings highlight how IFN-β induces IL-10 production and the importance that IL-10 plays in its anti-inflammatory properties, as well as identify a therapeutic target that could be used to increase the IL-10-dependent anti-inflammatory properties of IFN-β.  相似文献   

5.
6.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

7.
8.
One important mechanism of cross-regulation by opposing cytokines is inhibition of signal transduction, including inhibition of Janus kinase-STAT signaling by suppressors of cytokine signaling. We investigated whether IFN-gamma, a major activator of macrophages, inhibited the activity of IL-10, an important deactivator. Preactivation of macrophages with IFN-gamma inhibited two key anti-inflammatory functions of IL-10, the suppression of cytokine production and of MHC class II expression. Gene expression profiling showed that IFN-gamma broadly suppressed the ability of IL-10 to induce or repress gene expression. Although IFN-gamma induced expression of suppressor of cytokine signaling proteins, IL-10 signal transduction was not suppressed and IL-10 activation of Janus kinases and Stat3 was preserved. Instead, IFN-gamma switched the balance of IL-10 STAT activation from Stat3 to Stat1, with concomitant activation of inflammatory gene expression. IL-10 activation of Stat1 required the simultaneous presence of IFN-gamma. These results demonstrate that IFN-gamma operates a switch that rapidly regulates STAT activation by IL-10 and alters macrophage responses to IL-10. Dynamic regulation of the activation of different STATs by the same cytokine provides a mechanism by which cells can integrate and balance signals delivered by opposing cytokines, and extends our understanding of cross-regulation by opposing cytokines to include reprogramming of signaling and alteration of function.  相似文献   

9.
The signaling mechanism by which the anti-inflammatory cytokine IL-10 mediates suppression of proinflammatory cytokine synthesis remains largely unknown. Macrophage-specific STAT3-null mice have demonstrated that STAT3 plays a critical role in the suppression of LPS-induced TNF-alpha release, although the mechanism by which STAT3 mediates this inhibition is still not clear. Using an adenoviral system, we have expressed a dominant negative (DN) STAT3 in human macrophages to broaden the investigation to determine the role of STAT3 in IL-10-mediated anti-inflammatory signaling and gene expression. Overexpression of STAT3 DN completely inhibited IL-10-induced suppressor of cytokine signaling 3, tissue inhibitor of MMP-1, TNF receptor expression, and the recently identified IL-10-inducible genes, T cell protein tyrosine phosphatase and signaling lymphocyte activation molecule. STAT3 DN also blocked IL-10-mediated inhibition of MHC class II and COX2 expression. In agreement with the studies in STAT3-null mice, overexpression of the STAT3 DN completely reversed the ability of IL-10 to inhibit LPS-mediated TNF-alpha and IL-6 production. However, real-time PCR analysis showed that STAT3 DN expression did not affect immediate suppression of TNF-alpha mRNA, but did reverse the suppression observed at later time points, suggesting a biphasic regulation of TNF-alpha mRNA levels by IL-10. In conclusion, although STAT3 does appear to be the dominant mediator of the majority of IL-10 functions, there are elements of its anti-inflammatory activity that are STAT3 independent.  相似文献   

10.
An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.  相似文献   

11.
IL-6 is synthesized in human papilloma virus (HPV)-transformed cervical carcinoma cell lines and is supposed to stimulate these cells in an autocrine manner. We studied IL-6 production and responsiveness in nonmalignant HPV-transformed keratinocytes and cervical carcinoma cells in detail. IL-6 was detected in cervical carcinomas in situ. Correspondingly, HPV-positive carcinoma cell lines expressed high IL-6 levels. However, these carcinoma cell lines showed low responsiveness to IL-6 as revealed by low constitutive STAT3 binding activity, which was not further enhanced by exogenous IL-6. In contrast, in vitro-transformed nonmalignant keratinocytes without endogenous IL-6 production strongly responded to exogenous IL-6 with activation of STAT3. STAT3 protein expression levels were comparable in both responsive and nonresponsive cell lines. Also, gp130, the upstream signal-transducing receptor subunit conveying IL-6 signals into the cell, was expressed in all tested cell lines. However, the IL-6 binding subunit gp80 was lost in the malignant cells. Addition of soluble gp80 was sufficient to restore IL-6 responsiveness in carcinoma cells as shown by enhanced activation of STAT3 binding activity. As a consequence of the restored IL-6 responsiveness, carcinoma cells strongly produced the chemokine monocyte chemoattractant protein-1 (MCP-1). Our data demonstrate that cervical carcinoma cells producing high amounts of IL-6 only weakly respond to IL-6 in an autocrine manner due to limited gp80 expression. While production of IL-6 might contribute to a local immunosuppressive effect, silencing an autocrine IL-6 response prevents constitutive production of the mononuclear cell-attracting chemokine MCP-1. Both mechanisms might help the tumor to escape the immune system.  相似文献   

12.
13.
14.
Interleukin-10 (IL-10) is a cytokine that has pleiotropic effects on a variety of different cell types. Although many of the biologic responses induced by IL-10 are also induced by other cytokines, such as IL-6, IL-10 is relatively unique in its ability to potently inhibit production of pro-inflammatory cytokines in macrophages. In this study, we have used gain-of-function and loss-of-function genetic approaches to define the intracellular components involved in the different biologic actions of IL-10. Herein, we demonstrate that the ability of IL-10 to inhibit tumor necrosis factor alpha (TNFalpha) production in lipopolysaccharide-stimulated macrophages requires the presence of Stat3, Jak1, and two distinct regions of the IL-10 receptor intracellular domain. Macrophages deficient in Stat3 or Jak1 were unable to inhibit lipopolysaccharide-induced TNFalpha production following treatment with murine IL-10. Structure-function analysis of the intracellular domain of the IL-10 receptor alpha chain showed that whereas two redundant Stat3 recruitment sites (427YQKQ430 and 477YLKQ480) were required for all IL-10-dependent effects on either B cells or macrophages, expression of IL-10-dependent anti-inflammatory function required the presence on the intracellular domain of the IL-10 receptor of a carboxyl-terminal sequence containing at least one functionally critical serine. These results thus demonstrate that IL-10-induced inhibition of TNFalpha production requires two distinct regions of the IL-10 receptor intracellular domain and thereby establish a distinctive molecular basis for the developmental versus the anti-inflammatory actions of IL-10.  相似文献   

15.
16.
17.
Antiproliferative activity of IL-27 on melanoma.   总被引:1,自引:0,他引:1  
IL-27 is a member of the IL-6/IL-12 family and activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130. We previously demonstrated that IL-27 has potent antitumor activities, which are mediated through CD8(+) T cells, NK cells, or its own antiangiogenic activity. In this study, we demonstrate that IL-27 also possesses a direct antiproliferative activity on melanoma. Although WSX-1 expression was hardly detected in parental mouse melanoma B16F10 cells, IL-27 activated STAT1 and STAT3 and up-regulated MHC class I in B16F10 transfectants expressing wild-type WSX-1. In contrast, IL-27 failed to activate STAT1 and up-regulate MHC class I in those expressing mutant WSX-1, in which the putative STAT1-binding Tyr-609 of the cytoplasmic region was replaced by Phe. IL-27 inhibited the tumor growth of transfectants expressing wild-type WSX-1 in a dose-dependent manner. IL-27 augmented the expression of IFN regulatory factor (IRF)-1 and IRF-8, which possess tumor suppressor activities, in B16F10 transfectants expressing wild-type WSX-1. Down-regulation of IRF-1 but not IRF-8 with small interfering RNA partially blocked the IL-27-induced growth inhibition. A small, but significant, direct antiproliferative effect of IL-27 was also observed in vivo. Moreover, several human melanoma cells were revealed to express both IL-27 receptor subunits, and activation of STAT1 and STAT3 and growth inhibition by IL-27 were detected. These results suggest that IL-27 has an antiproliferative activity on melanomas through WSX-1/STAT1 signaling. Thus, IL-27 may be an attractive candidate as an antitumor agent applicable to cancer immunotherapy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号