首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed reliability scores for five widely used membrane protein topology prediction methods, and have applied them both on a test set of 92 bacterial plasma membrane proteins with experimentally determined topologies and on all predicted helix bundle membrane proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis elegans. We show that the reliability scores work well for the TMHMM and MEMSAT methods, and that they allow the probability that the predicted topology is correct to be estimated for any protein. We further show that the available test set is biased towards high-scoring proteins when compared to the genome-wide data sets, and provide estimates for the expected prediction accuracy of TMHMM across the three genomes. Finally, we show that the performance of TMHMM is considerably better when limited experimental information (such as the in/out location of a protein's C terminus) is available, and estimate that at least ten percentage points in overall accuracy in whole-genome predictions can be gained in this way.  相似文献   

2.
Membrane protein topology predictions can be markedly improved by the inclusion of even very limited experimental information. We have recently introduced an approach for the production of reliable topology models based on a combination of experimental determination of the location (cytoplasmic or periplasmic) of a protein's C terminus and topology prediction. Here, we show that determination of the location of a protein's C terminus, rather than some internal loop, is the best strategy for large-scale topology mapping studies. We further report experimentally based topology models for 31 Escherichia coli inner membrane proteins, using methodology suitable for genome-scale studies.  相似文献   

3.
A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.  相似文献   

4.
Topology predictions for integral membrane proteins can be substantially improved if parts of the protein can be constrained to a given in/out location relative to the membrane using experimental data or other information. Here, we have identified a set of 367 domains in the SMART database that, when found in soluble proteins, have compartment-specific localization of a kind relevant for membrane protein topology prediction. Using these domains as prediction constraints, we are able to provide high-quality topology models for 11% of the membrane proteins extracted from 38 eukaryotic genomes. Two-thirds of these proteins are single spanning, a group of proteins for which current topology prediction methods perform particularly poorly.  相似文献   

5.
We have developed a method to reliably identify partial membrane protein topologies using the consensus of five topology prediction methods. When evaluated on a test set of experimentally characterized proteins, we find that approximately 90% of the partial consensus topologies are correctly predicted in membrane proteins from prokaryotic as well as eukaryotic organisms. Whole-genome analysis reveals that a reliable partial consensus topology can be predicted for approximately 70% of all membrane proteins in a typical bacterial genome and for approximately 55% of all membrane proteins in a typical eukaryotic genome. The average fraction of sequence length covered by a partial consensus topology is 44% for the prokaryotic proteins and 17% for the eukaryotic proteins in our test set, and similar numbers are found when the algorithm is applied to whole genomes. Reliably predicted partial topologies may simplify experimental determinations of membrane protein topology.  相似文献   

6.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

7.
For current state-of-the-art methods, the prediction of correct topology of membrane proteins has been reported to be above 80%. However, this performance has only been observed in small and possibly biased data sets obtained from protein structures or biochemical assays. Here, we test a number of topology predictors on an "unseen" set of proteins of known structure and also on four "genome-scale" data sets, including one recent large set of experimentally validated human membrane proteins with glycosylated sites. The set of glycosylated proteins is also used to examine the ability of prediction methods to separate membrane from nonmembrane proteins. The results show that methods utilizing multiple sequence alignments are overall superior to methods that do not. The best performance is obtained by TOPCONS, a consensus method that combines several of the other prediction methods. The best methods to distinguish membrane from nonmembrane proteins belong to the "Phobius" group of predictors. We further observe that the reported high accuracies in the smaller benchmark sets are not quite maintained in larger scale benchmarks. Instead, we estimate the performance of the best prediction methods for eukaryotic membrane proteins to be between 60% and 70%. The low agreement between predictions from different methods questions earlier estimates about the global properties of the membrane proteome. Finally, we suggest a pipeline to estimate these properties using a combination of the best predictors that could be applied in large-scale proteomics studies of membrane proteins.  相似文献   

8.
Han MJ  Yun H  Lee JW  Lee YH  Lee SY  Yoo JS  Kim JY  Kim JF  Hur CG 《Proteomics》2011,11(7):1213-1227
Escherichia coli K-12 and B strains have most widely been employed for scientific studies as well as industrial applications. Recently, the complete genome sequences of two representative descendants of E. coli B strains, REL606 and BL21(DE3), have been determined. Here, we report the subproteome reference maps of E. coli B REL606 by analyzing cytoplasmic, periplasmic, inner and outer membrane, and extracellular proteomes based on the genome information using experimental and computational approaches. Among the total of 3487 spots, 651 proteins including 410 non-redundant proteins were identified and characterized by 2-DE and LC-MS/MS; they include 440 cytoplasmic, 45 periplasmic, 50 inner membrane, 61 outer membrane, and 55 extracellular proteins. In addition, subcellular localizations of all 4205 ORFs of E. coli B were predicted by combined computational prediction methods. The subcellular localizations of 1812 (43.09%) proteins of currently unknown function were newly assigned. The results of computational prediction were also compared with the experimental results, showing that overall precision and recall were 92.16 and 92.16%, respectively. This work represents the most comprehensive analyses of the subproteomes of E. coli B, and will be useful as a reference for proteome profiling studies under various conditions. The complete proteome data are available online (http://ecolib.kaist.ac.kr).  相似文献   

9.
A key question associated with topology predictions for membrane proteins is whether there is sufficient variation in the biophysical properties of residues at the membrane interface to enable identification of TM spans in a robust and efficient manner using relatively simple methods of analysis. Here, a test for the homogeneity of multinomial populations is used to identify statistical differences between the residue compositions of windows within datasets of aligned non-homologous TM α-helices. Using this approach, the accuracy and robustness of the predicted boundaries for datasets of uncleaved signal (US) sequences and stop transfer sequences (ST) is tested. The validity of the 21 residue length, which is generally assumed for TM spans in membrane protein topology prediction is also investigated and it is suggested that ST sequences may be better represented by a length of 22 residues.  相似文献   

10.
Zpred2 is an improved version of ZPRED, a predictor for the Z-coordinates of alpha-helical membrane proteins, that is, the distance of the residues from the center of the membrane. Using principal component analysis and a set of neural networks, Zpred2 analyzes data extracted from the amino acid sequence, the predicted topology, and evolutionary profiles. Zpred2 achieves an average accuracy error of 2.18 A (2.17 A when an independent test set is used), an improvement by 15% compared to the previous version. We show that this accuracy is sufficient to enable the predictions of helix lengths with a correlation coefficient of 0.41. As a comparison, two state-of-the-art HMM-based topology prediction methods manage to predict the helix lengths with a correlation coefficient of less than 0.1. In addition, we applied Zpred2 to two other problems, the re-entrant region identification and model validation. Re-entrants were able to be detected with a certain consistency, but not better than with previous approaches, while incorrect models as well as mispredicted helices of transmembrane proteins could be distinguished based on the Z-coordinate predictions.  相似文献   

11.
Evaluation of methods for the prediction of membrane spanning regions.   总被引:20,自引:0,他引:20  
MOTIVATION: A variety of tools are available to predict the topology of transmembrane proteins. To date no independent evaluation of the performance of these tools has been published. A better understanding of the strengths and weaknesses of the different tools would guide both the biologist and the bioinformatician to make better predictions of membrane protein topology. RESULTS: Here we present an evaluation of the performance of the currently best known and most widely used methods for the prediction of transmembrane regions in proteins. Our results show that TMHMM is currently the best performing transmembrane prediction program.  相似文献   

12.
Membrane protein prediction methods   总被引:13,自引:0,他引:13  
We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. In general, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling.  相似文献   

13.
MOTIVATION: Knowledge of the transmembrane helical topology can help identify binding sites and infer functions for membrane proteins. However, because membrane proteins are hard to solubilize and purify, only a very small amount of membrane proteins have structure and topology experimentally determined. This has motivated various computational methods for predicting the topology of membrane proteins. RESULTS: We present an improved hidden Markov model, TMMOD, for the identification and topology prediction of transmembrane proteins. Our model uses TMHMM as a prototype, but differs from TMHMM by the architecture of the submodels for loops on both sides of the membrane and also by the model training procedure. In cross-validation experiments using a set of 83 transmembrane proteins with known topology, TMMOD outperformed TMHMM and other existing methods, with an accuracy of 89% for both topology and locations. In another experiment using a separate set of 160 transmembrane proteins, TMMOD had 84% for topology and 89% for locations. When utilized for identifying transmembrane proteins from non-transmembrane proteins, particularly signal peptides, TMMOD has consistently fewer false positives than TMHMM does. Application of TMMOD to a collection of complete genomes shows that the number of predicted membrane proteins accounts for approximately 20-30% of all genes in those genomes, and that the topology where both the N- and C-termini are in the cytoplasm is dominant in these organisms except for Caenorhabditis elegans. AVAILABILITY: http://liao.cis.udel.edu/website/servers/TMMOD/  相似文献   

14.
Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.  相似文献   

15.
Escherichia coli synthesize over 60 poorly understood small proteins of less than 50 amino acids. A striking feature of these proteins is that 65% contain a predicted α-helical transmembrane (TM) domain. This prompted us to examine the localization, topology, and membrane insertion of the small proteins. Biochemical fractionation showed that, consistent with the predicted TM helix, the small proteins generally are most abundant in the inner membrane fraction. Examples of both N(in)-C(out) and N(out)-C(in) orientations were found in assays of topology-reporter fusions to representative small TM proteins. Interestingly, however, three of nine tested proteins display dual topology. Positive residues close to the transmembrane domains are conserved, and mutational analysis of one small protein, YohP, showed that the positive inside rule applies for single transmembrane domain proteins as has been observed for larger proteins. Finally, fractionation analysis of small protein localization in strains depleted of the Sec or YidC membrane insertion pathways uncovered differential requirements. Some small proteins appear to be affected by both Sec and YidC depletion, others showed more dependence on one or the other insertion pathway, whereas one protein was not affected by depletion of either Sec or YidC. Thus, despite their diminutive size, small proteins display considerable diversity in topology, biochemical features, and insertion pathways.  相似文献   

16.
Methods that predict the topology of helical membrane proteins are standard tools when analyzing any proteome. Therefore, it is important to improve the performance of such methods. Here we introduce a novel method, PRODIV-TMHMM, which is a profile-based hidden Markov model (HMM) that also incorporates the best features of earlier HMM methods. In our tests, PRODIV-TMHMM outperforms earlier methods both when evaluated on "low-resolution" topology data and on high-resolution 3D structures. The results presented here indicate that the topology could be correctly predicted for approximately two-thirds of all membrane proteins using PRODIV-TMHMM. The importance of evolutionary information for topology prediction is emphasized by the fact that compared with using single sequences, the performance of PRODIV-TMHMM (as well as two other methods) is increased by approximately 10 percentage units by the use of homologous sequences. On a more general level, we also show that HMM-based (or similar) methods perform superiorly to methods that focus mainly on identification of the membrane regions.  相似文献   

17.
State-of-the-art methods for topology of α-helical membrane proteins are based on the use of time-consuming multiple sequence alignments obtained from PSI-BLAST or other sources. Here, we examine if it is possible to use the consensus of topology prediction methods that are based on single sequences to obtain a similar accuracy as the more accurate multiple sequence-based methods. Here, we show that TOPCONS-single performs better than any of the other topology prediction methods tested here, but ~6% worse than the best method that is utilizing multiple sequence alignments. AVAILABILITY AND IMPLEMENTATION: TOPCONS-single is available as a web server from http://single.topcons.net/ and is also included for local installation from the web site. In addition, consensus-based topology predictions for the entire international protein index (IPI) is available from the web server and will be updated at regular intervals.  相似文献   

18.
An alternative topological model for Escherichia coli OmpA.   总被引:3,自引:1,他引:2  
The current topological model for the Escherichia coli outer membrane protein OmpA predicts eight N-terminal transmembrane segments followed by a long periplasmic tail. Several recent reports have raised serious doubts about the accuracy of this prediction. An alternative OmpA model has been constructed using (1) computer-aided predictions developed specifically to predict topology of bacterial outer membrane porins, (2) the results of two reports that identified sequence homologies between OmpA and other peptidoglycan-associated proteins, and (3) biochemical, immunochemical, and genetic topological data on proteins of the OmpA family provided by numerous previous studies. The new model not only agrees with the varied experimental data concerning OmpA but also provides an improved understanding of the relationship between the structure and the multifunctional role of OmpA in the bacterial outer membrane.  相似文献   

19.
The Escherichia coli ammonia channel protein, AmtB, is a homotrimeric polytopic inner membrane protein in which each subunit has 11 transmembrane helices. We have shown that the structural gene amtB encodes a preprotein with a signal peptide that is cleaved off to produce a topology with the N-terminus in the periplasm and the C-terminus in the cytoplasm. Deletion of the signal peptide coding region results in significantly lower levels of AmtB accumulation in the membrane but modification of the signal peptidase cleavage site, leading to aberrant cleavage, does not prevent trimer formation and does not inactivate the protein. The presence of a signal peptide is apparently not a conserved feature of all prokaryotic Amt proteins. Comparison of predicted AmtB sequences suggests that while Amt proteins in Gram-negative organisms utilize a signal peptide, the homologous proteins in Gram-positive organisms do not.  相似文献   

20.
Membrane proteins perform a variety of functions, all crucially dependent on their orientation in the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the topology of most proteins have been experimentally determined. Due to this, most scientists rely primarily on prediction algorithms to determine topology and TMD assignments. Since these can give contradictory results, single‐algorithm‐based predictions are unreliable. To map the extent of potential misanalysis, the predictions of nine algorithms on the yeast proteome are compared and it is found that they have little agreement when predicting TMD number and termini orientation. To view all predictions in parallel, a webpage called TopologYeast: http://www.weizmann.ac.il/molgen/TopologYeast was created. Each algorithm is compared with experimental data and a poor agreement is found. The analysis suggests that more systematic data on protein topology are required to increase the training sets for prediction algorithms and to have accurate knowledge of membrane protein topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号