首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the advent of genetic manipulation techniques, it has become possible to clone and insert gene into the genome of crop plants to confer resistance to insects and pests. Resistance to insects has been demonstrating in transgenic plants either by triggering defense system of plants or by expressing heterologous cry genes for delta-endotoxins from Bacillus thuringiensis. In the present study, synthetic cry1Ab gene was developed with optimized chloroplast preferred codons and is expressed in tobacco plastid genome called plastome, following chloroplast transformation strategy, which is environment friendly technique to minimize out-crossing of transgenes to related weeds and crops. In addition, due to high polyploidy of plastid genome transformation of chloroplast permits the introduction of thousands of copies of foreign genes per plant cell, leading to extraordinarily high levels of foreign protein expression. The chloroplast transformation technology aims to insert stably into the plastome through homologous recombination into pre-decided position. To characterize the synthetic cry1Ab gene, chloroplast transformation vectors were developed and bombarded to the leaf cells of tobacco plants maintained under aseptic conditions. After bombardment, the drug resistant shoots were selected and regenerated on drug containing regeneration medium. Homoplasmic shoots were recovered after successive rounds of selection and regeneration. Proliferated plants were subjected to genomic DNA analysis by using polymerase chain reaction (PCR) technique where cry1Ab gene-specific primers were used. PCR positive plants were subjected to protein analysis, and functionally expressed proteins were detected using Immuno-Strips specific for cry1Ab/Ac gene products. Transgenic plants carrying cry1Ab gene were found expressing Bt toxins confirming that engineered gene could be expressed in other plants as well.  相似文献   

2.
The insecticidal crystal protein(s) encoded by cry gene(s) of Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. A new 3′-truncated cry1Ab gene was cloned from an indigenous isolate of Bt, A19-31. Nucleotide sequencing and homology search revealed that the deduced amino acid sequence of Cry1Ab toxin of Bt strain A19-31 had a variation of two amino acid residues with the holotype sequence, Cry1Ab1. Expression of the 3′-truncated cry1Ab gene was studied in an acrystalliferous strain of Bt (4Q7). SDS-PAGE and immunostrip analysis of spore-crystal mixture revealed a low level expression of the 3′-truncated cry1Ab gene. Insecticidal activity assay showed that the recombinant 3′-truncated cry1Ab gene product was toxic to larvae of both Helicoverpa armigera and Spodoptera litura.  相似文献   

3.
One transgenic rice line lacking Cry1Ab expression product was screened in the progenies of Agrobacterium-transformed transgenic rice variety Zhong 8215 with a cry1Ab gene under field releasing conditions by using GUS histochemical assay and Western blot. Molecular hybridization results revealed that the cry1Ab gene was silenced in the transgenic rice variety Zhong 8215 and two copies of ubiquitin promoter were integrated into the rice genome. The silencing of cry1Ab gene in transgenic rice was found to be due to the methylation of the ubiquitin promoter as revealed by methylation analysis. Meanwhile, different concentrations of demethylation reagent 5-azacytidine combining with different treatment time were employed to treat the silenced transgenic rice seeds. The results indicated that 5-azacytidine could reactivate 8%–30% of the silenced transgenic rice plants and the expression level of the reactivated cry1Ab transgene could reach as high as 0.147% of the total soluble protein. Treatment with low concentration of 5-azacytidine (45 mg/L for 1 d and 2 d) could lead to the highest reactivation ratio and the highest expression level of the cry1Ab gene.  相似文献   

4.
5.
Vegetable Indian mustard (Brassica juncea cv. “Green Wave”) plants that control Plutella xylostella (diamondback moth) (DBM) were produced by introduction of one or two Bacillus thuringiensis (Bt) genes. A cry1Ac Bt gene associated with the nptII gene for kanamycin selection or a cry1C Bt gene with the hpt gene for hygromycin selection was introduced individually through Agrobacterium-mediated transformation of seedling explants. A cry1C line was then transformed with the cry1Ac gene to produce pyramided cry1Ac + cry1C plants. Sixteen cry1C, five cry1Ac, and six cry1Ac + cry1C plants were produced. PCR and Southern analyses confirmed the presence of the cry1C, cry1Ac or pyramided cry1Ac + cry1C genes in the Indian mustard genome. ELISA analysis showed that production of Bt proteins varied greatly among individual transgenic plants, ranging from undetectable to over 1,000 ng Bt/mg total soluble protein. The levels of the Bt proteins were correlated with the effectiveness of control of diamondback moth (DBM) larvae. Insect bioassays indicated that both the cry1C and cry1Ac plants were toxic to susceptible DBM. The cry1C plants also controlled Cry1A-resistant DBM while cry1Ac plants controlled Cry1C-resistant DBM, and the pyramided cry1Ac + cry1C plants effectively controlled all three types of DBM. These Bt-transgenic plants could be used either for direct control of DBM and other lepidopteran insect pests or for tests of “dead-end” trap crops as protection of high value non-transgenic crucifer vegetables such as cabbage.  相似文献   

6.
The inheritance and expression patterns of the cry1Ab gene were studied in the progenies derived from different Bt (Bacillus thuringiensis) transgenic japonica rice lines under field conditions. Both Mendelian and distorted segregation ratios were observed in some selfed and crossed F2 populations. Crosses between japonica intra-subspecies had no significant effect on the segregation ratios of the cry1Ab gene, but crossing between japonica and indica inter-subspecies led to distorted segregation of the cry1Ab gene in the F2 population. Field-release experiments indicated that the cry1Ab gene was stably transmitted in an intact manner via successive sexual generations, and the concentration of the Cry1Ab protein was kept quantitatively stable up to the R6 generation. The cry1Ab gene, driven by the maize ubiquitin promoter, displayed certain kinds of spatial and temporal expression patterns under field conditions. The content of the Cry1Ab protein varied in different tissues of the main stems, the primary tillers and the secondary tillers. Higher levels of the Cry1Ab protein were found in the stems, leaves and leaf sheaths than in the roots, while the lowest level was detected in grains at the maturation stage. The content of the Cry1Ab protein in the leaves peaked at the booting stage and was lowest at the heading stage. Furthermore, the Cry1Ab content of cry1Ab expression in different tissues of transgenic rice varied individually with temperature. Received: 17 April 2001 / Accepted: 7 May 2001  相似文献   

7.
We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines.  相似文献   

8.
A synthetic version of the cry1Ab gene from Bacillus thuringiensis (Bt) was introduced into white spruce (Picea glauca) by microprojectile bombardment. A plasmid carrying the cry1Ab gene, driven by a ubiquitin (maize) promoter, was co-transferred with a plasmid containing the gus–nptII fusion gene as a screenable selection marker. Molecular analysis of the transgenic lines showed a high level (more than 90%) of co-integration of the cry1Ab gene with the screenable marker. A wide range of expression levels of the cry1Ab gene and corresponding endotoxin was obtained. Accumulation of the Cry1Ab protein was evaluated in embryogenic tissue, the needles of somatic seedlings and in the needles of 5-year-old field-grown trees of individual lines. Laboratory and field insect feeding trials suggest that several spruce transgenic lines were lethal to spruce budworm larvae.  相似文献   

9.
In order to develop a resistance management strategy to control tropical pests based on the co-expression of different toxins, a fully modified Bacillus thuringiensis cry1B gene and the translational fusion cry1B-cry1Ab gene have been developed. Both constructs were cloned under the control of a maize ubiquitin-1 or a rice actin-1 promoter and linked to the bar gene driven by the CaMV 35S promoter. Immature embryos from the tropical lines CML72, CML216, and their hybrids, were used as the target for transformation by microprojectile bombardment. Twenty five percent of the transformed maize plants with cry1B expressed a protein that is active against southwestern corn borer and sugarcane borer. Ten percent of the transgenic maize expressed single fusion proteins from the translational fusion gene cry1B-1Ab and showed resistance to these two pests as well as to the fall armyworm. Transgenic maize plants that carried the cry1B gene in T1 to T3 progenies transmitted trangenes with expected Mendelian segregation and conferred resistance to the two target insects. Molecular analyses confirmed the cry genes integration, the copy number, the size of protein(s) expressed in maize plants, the transmission, and the inheritance of the introduced cry gene. These new transgenic products will provide another recourse for reducing the build-up of resistance in pest populations. Received: 25 September 2000 / Accepted: 15 December 2000  相似文献   

10.
 Cell suspension cultures were established from leaf explants of gentian (Gentiana triflora×G. scabra) for the generation of transgenic plants by particle bombardment. The parameters for the bombardment of suspension culture cells with a particle gun were examined by monitoring the transient expression of a gene for β-glucuronidase driven by the cauliflower mosaic virus (CaMV) 35S promoter. We found that prior culture of suspension culture cells for 5 days on solid medium was optimum for successful particle bombardment. Putative transformed calli were obtained from bombarded cells after a two-step selection procedure. Cells were cultured first with 30 mg l–1 hygromycin in liquid MS medium that contained 10 mg l–1 N-phenyl-N′-1,2,3-thiadiazol-5-yl urea, 1 mg/l 1-naphthaleneacetic acid and 30 g l–1 sucrose and then on solid medium prepared from the same liquid medium plus 2 g l–1 gellan gum. After 12 weeks of selection on solid medium that contained 30 mg l–1 hygromycin, two transgenic gentian plants were regenerated from each selected callus. Analysis by the polymerase chain reaction and Southern blotting revealed the stable integration of transferred DNA. Received: 3 June 1999 / Revision received: 21 September 1999 / Accepted: 20 September 1999  相似文献   

11.
We evaluated the insecticidal toxicity of Cry1Aa, Cry1Ab and Cry1Ac toxins against neonate larvae of sugarcane shoot borer Chilo infuscatellus Snellen (Lepidoptera: Crambidae) in vitro on diet surface. With the lowest LC50 value, Cry1Ab emerged as the most effective among the three toxins. Sugarcane cultivars Co 86032 and CoJ 64 were transformed with cry1Ab gene driven by maize ubiquitin promoter through particle bombardment and Agrobacterium-mediated transformation systems. Gene pyramiding was also attempted by retransforming sugarcane plants carrying bovine pancreatic trypsin inhibitor (aprotinin) gene, with cry1Ab. Southern analysis confirmed multiple integration of the transgene in case of particle bombardment and single site integration in Agrobacterium-mediated transformants. The expression of cry1Ab was demonstrated through Western analysis and the toxin was quantified using ELISA. The amount of Cry1Ab protein in different events varied from 0.007 to 1.73% of the total soluble leaf protein; the events transformed by Agrobacterium method showed significantly higher values. In in vivo bioassay with neonate larvae of shoot borer, transgenics produced considerably lower percentage of deadhearts despite suffering feeding damage by the borer compared with the untransformed control plants. Expressed Cry1Ab content was negatively related to deadheart damage. Aprotinin-expressing sugarcane pyramided with cry1Ab also showed reduction in damage. The potential of producing sugarcane transgenics with cry1Ab and aprotinin genes resistant to early shoot borer was discussed in the light of the results obtained.  相似文献   

12.
A newly-synthesized cry2Ab gene was characterized in Nicotiana tabacum, before its further transformation in cotton. Synthetic cry2Ab gene was cloned in pGreen0029 and its expression was transiently analyzed at mRNA level through agroinfiltration in tobacco. The mRNA of cry2Ab was detected after 72 h agroinfiltration through PCR using total plant RNA. This construct was then transformed into N. tabacum through Agrobacterium. Insect bioassays were conducted on detached leaves using first instar Spodoptera exigua larvae; after 96 h significant insect mortality was recorded. This newly synthesized gene was effective in controlling S. exigua first instar larvae. It can be used in combinations with other Bt genes like cry1Ac for developing resistance against major insect pests of cotton and further widening the insect control spectrum.  相似文献   

13.
14.
Bacillus thuringiensis (Bt) is the major source for transfer of genes to impart insect resistance in transgenic plants. Cry2A proteins of Bt are promising candidates for management of resistance development in insects due to their difference from the currently used Cry1A proteins, in structure and insecticidal mechanism. Two insecticidal crystal protein genes of Bt, viz. cry2Aa and cry2Ab were cloned from new isolates of Bt, 22-4 and 22-11, respectively. Expression of both the genes was studied in an acrystalliferous strain of Bt (4Q7) by fusing the cry2Aa and cry2Ab genes downstream of cry2Aa promoter and orf1 + orf2 sequences. Western blot analysis revealed a low level expression of the cloned cry2Aa and cry2Ab genes in the recombinant Bt strains. High-level expression of cry2Aa and cry2Ab genes was achieved in the recombinant E. coli by cloning the cry2A genes under the control of the T7 promoter.  相似文献   

15.
 Stem segments of seedlings from two Alstroemeria breeding lines, cultured on media supplemented with 4 mg/l 2,4-dichlorophenoxyacetic acid and 0.5–1.0 mg/l 6-benzylaminopurine (BA), initiated soft callus, which became compact after subculture on a medium with only 0.5 mg/l BA. Friable embryogenic calli were initiated from compact callus on a medium supplemented with 10 mg/l picloram. Proembryos developed from friable embryogenic calli via embryos into plants after subculture on medium supplemented with 0.1 mg/l BA. The proembryos formed friable embryogenic calli again after culture on medium supplemented with 10 mg/l picloram. The total time needed to regenerate a complete plantlet from friable callus was approximately 6 months. This system for the production of embryogenic material is considered to have valuable applications for genetic transformation in Alstroemeria. Received: 22 April 1999 / Revision received: 16 July 1999 · Accepted: 20 July 1999  相似文献   

16.
 A method for producing large numbers of transgenic wheat plants has been developed. With this approach, an average of 9.7% of immature embryo explants were transformed and generated multiple self-fertile, independently transformed plants. No untransformed plants, or escapes, were regenerated. This transformation procedure uses morphogenic calli derived from scutellum tissue of immature embryos of Triticum aestivum cv. Bobwhite co-bombarded with separate plasmids carrying a selectable marker gene (bar) and a gene of interest, respectively. Transformed wheat calli with a vigorous growth phenotype were obtained by extended culture on media containing 5.0 mg/l bialaphos. These calli retained morphogenic potential and were competent for plant regeneration for as long as 11 months. The bar gene and the gene of interest were co-expressed in T0 progeny plants. This wheat transformation protocol may facilitate quantitative production of multiple transgenic plants and significantly reduce the cost and labor otherwise required for screening out untransformed escapes. Received: 15 June 1998 / Revision received: 6 April 1999 / Accepted: 26 April 1999  相似文献   

17.
 A procedure for producing transgenic Chinese cabbage plants by inoculating cotyledonary explants with Agrobacterium tumefaciens strain EHA101 carrying a binary vector pIG121Hm, which contains kanamycin-resistance and hygromycin-resistance genes and the GUS reporter gene, is described. Infection was most effective (highest infection frequency) when explants were infected with Agrobacterium for 15 min and co-cultivated for 3 days in co-cultivation medium at pH 5.2 supplemented with 10 mg/l acetosyringone. Transgenic plants of all three cultivars used were obtained with frequencies of 1.6–2.7% when the explants were regenerated in shoot regeneration medium solidified with 1.6% agar. A histochemical GUS assay and PCR and Southern blot analyses confirmed that transformation had occurred. Genetic analysis of T1 progeny showed that the transgenes were inherited in a Mendelian fashion. Received: 15 December 1998 / Revision received: 2 July 1999 · Accepted: 8 July 1999  相似文献   

18.
19.
We produced 49 broccoli plants (Brassica oleracea L. ssp. italica) containing a Bacillus thuringiensis cry1Ab gene under control of the chemically inducible PR-1a promoter from tobacco. Most of them showed substantial or complete control of neonate diamondback moth larvae, regardless of whether the transgene was induced or not. Ten plants were selected for detailed study via northern and western analysis and insect bioassays. They expressed the cry1Ab gene and gave complete insect control when treated with the chemical inducers INA (2,6-dichloroiso-nicotinic acid) or BTH (1,2,3-benzothiadiazole-7-carbothioic acid S-methyl ester); however, leaves treated with water alone were also partially or completely protected from insect damage. Transgenic progeny plants showed greater inducibility than primary transformants at the molecular level. Two progeny lines produced cry1Ab mRNA and Cry1Ab protein and gave insect control only after induction, both when detached leaves and intact plants were tested. The relevance of these results to resistance management strategies is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号