首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanocobalamin (vitamin B12) is an essential nutrient as well as a very useful carrier in drug delivery. Conjugates of vitamin B12 are investigated due to their wide range of therapeutic applications. We report the synthesis of six vitamin B12 conjugates, and the effect of conjugation on their solubilities and stabilities in various media. We reveal here that vitamin B12 can be released readily if a 2'-hydroxyl group is conjugated rather than the 5'-hydroxyl group, and the solubility (thus the equivalents of vitamin B12) could be enhanced as much as 19-fold, by simple conjugates such as glycolates. Findings disclosed here provide insights into the reactivities of vitamin B12 conjugates, the design of future prodrugs and similar conjugated moieties using vitamin B12.  相似文献   

2.
Surface plasmon resonance biosensor analysis was used to evaluate the thermodynamics and binding kinetics of naturally occurring and synthetic cobalamins interacting with vitamin B(12) binding proteins. Cyanocobalamin-b-(5-aminopentylamide) was immobilized on a biosensor chip surface to determine the affinity of different cobalamins for transcobalamin, intrinsic factor, and nonintrinsic factor. A solution competition binding assay, in which a surface immobilized cobalamin analog competes with analyte cobalamin for B(12) protein binding, shows that only recombinant human transcobalamin is sensitive to modification of the corrin ring b-propionamide of cyanocobalamin. A direct binding assay, where recombinant human transcobalamin is conjugated to a biosensor chip, allows kinetic analysis of cobalamin binding. Response data for cyanocobalamin binding to the transcobalamin protein surface were globally fitted to a bimolecular interaction model that includes a term for mass transport. This model yields association and dissociation rate constants of k(a) = 3 x 10(7) M(-1) s(-1) and k(d) = 6 x 10(-4) s(-1), respectively, with an overall dissociation constant of K(D) = 20 pM at 30 degrees C. Transcobalamin binds cyanocobalamin-b-(5-aminopentylamide) with association and dissociation rates that are twofold slower and threefold faster, respectively, than transcobalamin binding to cyanocobalamin. The affinities determined for protein-ligand interaction, using the solution competition and direct binding assays, are comparable, demonstrating that surface plasmon resonance provides a versatile way to study the molecular recognition properties of vitamin B(12) binding proteins.  相似文献   

3.
Vitamin B12 transport by rat liver lysosomal membrane vesicles   总被引:1,自引:0,他引:1  
Vitamin B12 (hydroxycobalamin) is endocytosed by mammalian cells as a complex with transcobalamin II and then processed to free B12 in lysosomes. The mechanism by which free B12 becomes available for subsequent cellular metabolism has been uncertain. Lysosomal transport of cyanocobalamin (B12) was examined using membrane vesicles prepared from Percoll gradient purified lysosomes. B12 uptake by vesicles was dependent upon pH and was inhibited by the protonophore CCCP. Transport exhibited saturation kinetics with a Km of 3.5 microM and temperature dependence with a Q10 of 1.8. Uptake of B12 was dependent upon divalent cations and was inhibited by EDTA. Preparation of vesicles in the presence of 100 microM B12 resulted in stimulation of uptake consistent with a mechanism of countertransport. Excess cyanocobalamin, adenosylcobalamin, methylcobalamin, or cobinamide dicyanide inhibited uptake of B12. Trans-stimulation studies showed that only the first three compounds are actually transported species with cyanocobalamin as the preferred substrate. We conclude that lysosomes have a specific transport system for vitamin B12 that results in release of this enzyme cofactor to the cytoplasm.  相似文献   

4.
The SAR for the affinity to the A(1) adenosine receptor and relative intrinsic efficacy (IE, [(35)S]-GTPgammaS binding) of a series of 5'-carbamate and 5'-thionocarbamate derivatives of tecadenoson is described. Based on this SAR, selected compounds were evaluated in guinea pig isolated hearts to determine whether they were partial or full agonists with respect to their negative dromotropism, an A(1) AdoR mediated effect. Progress towards obtaining a partial A(1) AdoR agonist to potentially control ventricular rate during atrial fibrillation has been made with the discovery of several potent partial A(1) AdoR agonists (compounds 13, 14, and 17).  相似文献   

5.
The uptake of [57Co]B13 (cyanocobalamin) by Euglena gracilis strain Z (ATCC 12716) occurred in 2 distinct phases-an initial rapid phase followed by a slower secondary phase. This secondary phase appeared after the saturation of the binding sites involved in the initial rapid phase and was energy-dependent and completely inhibited by 2,4-dinitrophenot, KCN and sodium azide. the subcellular localization of labeled cyanocobalamin taken up by the cell was mostly contained in the chloroplast fraction. the time course and the saturation kinetics of B12 uptake by purified chloroplast fraction indicated that this fraction and the intact cell had a similar affinity for the vitamin B12. This suggested that the chloroplasts contained the binding sites for vitamin 12 and might regulate the uptake process in the intact cell. the kinetic properties of the overall 12 uptake mechanism suggested that the initial phase represent the binding of vitamin 12 to the available sites on the chloroplast. the secondary phase may represent the de novo synthesis of new binding sites.  相似文献   

6.
The outer membranes of Gram-negative bacteria possess transport proteins essential for uptake of scarce nutrients. In TonB-dependent transporters, a conserved sequence of seven residues, the Ton box, faces the periplasm and interacts with the inner membrane TonB protein to energize an active transport cycle. A critical mechanistic step is the structural change in the Ton box of the transporter upon substrate binding; this essential transmembrane signaling event increases the affinity of the transporter for TonB and enables active transport to proceed. We have solved crystal structures of BtuB, the outer membrane cobalamin transporter from Escherichia coli, in the absence and presence of cyanocobalamin (vitamin B(12)). In these structures, the Ton box is ordered and undergoes a conformational change in the presence of bound substrate. Calcium has been implicated as a necessary factor for the high-affinity binding (K(d) approximately 0.3 nM) of cyanocobalamin to BtuB. We observe two bound calcium ions that order three extracellular loops of BtuB, thus providing a direct (and unusual) structural role for calcium.  相似文献   

7.
Transport of vitamin B 12 in Escherichia coli   总被引:11,自引:11,他引:0       下载免费PDF全文
The uptake of (60)Co-labeled cyanocobalamin (vitamin B(12)) by cells of Escherichia coli K-12lambda was shown to consist of an initial rapid phase (complete in <1 min), followed by a slower secondary phase. Methods enabling the measurement of (60)Co-B(12) uptake after incubation times of 1 to 2 sec were used in studies on the initial rate of B(12) uptake. This initial process showed saturation kinetics, with a V(max) of 56 molecules per sec per cell and a K(m) of 5 nm, and was essentially independent of cellular energy metabolism. No inhibition was obtained with cyanide, fluoride, arsenite, or 2, 4-dinitrophenol, and an energy of activation of 3.8 kcal/mole for this initial phase of uptake was calculated from its response to temperature changes between 15 and 35 C. The inhibition by HgCl(2) (50% at 0.1 mm) but not by 1 mmN-ethylmaleimide or 1 mmp-chloromercuribenzoate was consistent with a role for a relatively inaccessible sulfhydryl residue at the initial B(12) binding site. The secondary phase of B(12) uptake was clearly dependent on the energy metabolism of the cell, and, from its response to temperature, an energy of activation of about 17 kcal/mole was calculated. Cyanide (10 mm), arsenite (10 mm), and 2, 4-dinitrophenol (0.1 mm) gave at least 70% inhibition of the rate of the secondary phase. The formation of other cobalamins, such as 5'-deoxyadenosyl cobalamin, was not an obligate part of B(12) transport. The cells were also able to take up (60)Co-labeled cobinamide cyanide.  相似文献   

8.
Analysis of tissue from Spirometra mansonoides spargana has shown that cyanocobalamin (vitamin B12) is metabolized to adenosylcobalamin and hydroxocobalamin. No methylcobalamin was detected. When the tissues were examined for enzymes which are known to utilize coenzyme forms of vitamin B12, only methylmalonyl CoA mutase, which requires adenosylcobalamin was found. The enzyme, tetrahydropteroylglutamate methyltransferase, which requires methylcobalamin as a cofactor, was not detected. A sizable portion of the cyanocobalamin taken up was bound to ammonium sulfate-precipitable material, suggesting that the binding substance is a protein. Vitamin B12 taken up by spargana was found to be released in vivo with a biological half-life of about 7 weeks.  相似文献   

9.
The substrate specificity of the tetrachloroethene reductive dehalogenase of Dehalospirillum multivoransand its corrinoid cofactor were studied. Besides reduced methyl viologen, titanium(III) citrate could serve as electron donor for reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene to cis-1,2-dichloroethene. In addition to chlorinated ethenes, chlorinated propenes were reductively dechlorinated solely by the native enzyme. trans-1,3-Dichloropropene, 1,1,3-trichloropropene and 2,3-dichloropropene were reduced to a mixture of mono-chloropropenes, 1,1-dichloropropene, and 2-chloropropene, respectively. Other halogenated compounds that were rapidly reduced by the enzyme were also dehalogenated abiotically by the heat-inactivated enzyme and by commercially available cyanocobalamin. The rate of this abiotic reaction was dependent on the number and type of halogen substituents and on the type of catalyst. The corrinoid cofactor purified from the tetrachloroethene dehalogenase of D. multivorans exhibited an activity about 50-fold higher than that of cyanocobalamin (vitamin B(12)) with trichloroacetate as electron acceptor, indicating that the corrinoid cofactor of the PCE dehalogenase is not cyanocobalamin. Corrinoids catalyzed the rapid dehalogenation of trichloroacetic acid. The rate was proportional to the amount of, e.g. cyanocobalamin; therefore, the reductive dehalogenation assay can be used for the sensitive and rapid quantification of this cofactor.  相似文献   

10.
Growth of Escherichia coli K-12 strains in the presence of the vitamin cyanocobalamin (B12) resulted in an 80 to 90% reduction in B12 uptake activity of washed cells. Coincident with the decline in uptake activity was the depression of B12-binding activity in energy-poisoned cells, suggesting that growth in B12 resulted in the repression of synthesis of the B12 receptor protein in the outer membrane. Growth in the presence of B12 led to marked reduction in sensitivity to the E colicins, whose adsorption to cells requires the B12 receptor, and to a decrease in the amount of a band on electropherograms of outer membrane proteins. That polypeptide was also missing from mutants altered at btuB, the locus encoding the B12 receptor. Addition of B12 to growing cultures resulted in the exponential decline in specific activity of B12 uptake, as expected for dilution of functional receptors by further growth. Repression of receptor synthesis appears to be regulated by the level of intracellular, rather than extracellular, B12 and is separate from the regulation of the methionine biosynthetic pathway. Mutants altered in btuC, which are defective in accumulation and retention of B12, exhibit a much lower degree of repressibility.  相似文献   

11.
Summary Two compounds which are both antimetabolites and precursors of vitamin B12, o-phenylendiamine, and 5,6-dimethylbenzimidazole, stimulated the production of vitamin B12 by Propionibacterium freudenreichii at concentrations which were subinhibitory for growth. The stimulatory effect of the compounds depended not only on their concentration, but also on the time of addition. During cultivation, two chromatographically distinguishable fractions with vitamin B12 activity were formed. At concentrations which stimulated production of vitamin B12, only the biosynthesis of true vitamin B12 (cyanocobalamin) took place, while the biosynthesis of the analogue with a higher molecular weight was inhibited.  相似文献   

12.
The transport of cyanocobalamin (vitamin B12) in cells of Escherichia coli is dependent on a receptor protein (BtuB protein) located in the outer membrane. A 9.1-kilobase pair BamHI fragment carrying the btuB gene was cloned from a specialized transducing phage into multicopy plasmids. Insertions of transposon Tn1000 which prevented production of the receptor localized btuB to a 2-kilobase pair region. Further subcloning allowed isolation of this region as a 2.3-kilobase pair Sau3A fragment. The BtuB+ plasmids were shown by maxicell analysis to encode a polypeptide with a molecular weight of 66,000 in the outer membrane. This polypeptide was missing in cells with Tn1000 insertions in btuB and was reduced in amount upon growth of plasmid-bearing cells in repressing concentrations of vitamin B12. Several Tn1000 insertions outside the 5' end of the coding region exhibited reduced production of receptor. A deletion at the 3' end of btuB resulted in formation of an altered receptor. Amplified production of this polypeptide was associated with increased levels of binding of the receptor's ligands (vitamin B12 and phage BF23), increased rates of vitamin B12 uptake, and altered susceptibility to the group E colicins. Deficiency in various major outer membrane proteins did not affect production of the btuB product, and the amplified levels of this protein partially reversed the tolerance to E colicins seen in these mutants.  相似文献   

13.
Various properties of mutants of Escherichia coli K12 lacking specific outer membrane proteins have been studied. ompA mutants are shown to grow less well than their parent strains under a variety of growth conditions, and after completion of growth to enter a decline phase in which viability is lost and the cells become heavily piliated and clump. They are defective in the uptake of amino acids, whereas the uptakes of the larger transport substrates ferrienterochelin and cyanocobalamin (vitamin B12) are normal. These ompA mutants also grow poorly at 42 °C. The implications of these results are discussed in terms of the function of the ompA. gene product. No growth or uptake defects were observed for ompB or tsx mutants.  相似文献   

14.
Intracellular B(12) metabolism involves a B(12) trafficking chaperone CblC that is well conserved in mammals including human. The protein CblC is known to bind cyanocobalamin (CNCbl, vitamin B(12)) inducing the base-off transition and convert it into an intermediate that can be used in enzyme cofactor synthesis. The binding affinity of human CblC for CNCbl was determined to be K(d)=≈6-16 μM, which is relatively low considering sub-micromolar B(12) concentrations (0.03-0.7 μM) in normal cells. In the current study, we discovered that the base-off transition of CNCbl upon binding to bCblC, a bovine homolog of human CblC, is facilitated in the presence of reduced form of glutathione (GSH). In addition, GSH dramatically increases the binding affinity for CNCbl lowering the K(d) from 27.1 ± 0.2-0.24 ± 0.09 μM. The effect of GSH is due to conformational change of bCblC upon binding with GSH, which was indicated by limited proteolysis and urea-induced equilibrium denaturation of the protein. The results of this study suggest that GSH positively modulates bCblC by increasing the binding affinity for CNCbl, which would enhance functional efficiency of the protein.  相似文献   

15.
16.

Background

Vitamin B12 (cobalamin) is a cobalt-containing compound synthesized by bacteria and an essential nutrient in mammals, which take it up from diet. The absorption and distribution of dietary vitamin B12 to the organism is a complex process involving several gene products including carrier proteins, plasma membrane receptors and transporters. Disturbed cellular entry, transit or egress of vitamin B12 may lead to low vitamin B12 status or deficiency and eventually hematological and neurological disorders.

Objective

The aim of this review is to summarize the causes leading to vitamin B12 deficiency including decreased intake, impaired absorption and increased requirements. Under physiological conditions, vitamin B12 bound to the gastric intrinsic factor is internalized in the ileum by a highly specific receptor complex composed by Cubilin (Cubn) and Amnionless (Amn). Following exit of vitamin B12 from the ileum, general cellular uptake from the circulation requires the transcobalamin receptor CD320 whereas kidney reabsorption of cobalamin depends on Megalin (Lrp2).Whereas malabsorption of vitamin B12 is most commonly seen in the elderly, selective pediatric, nondietary-induced B12 deficiency is generally due to inherited disorders including the Imerslund-Gräsbeck syndrome and the much rarer intrinsic factor deficiency. Biochemical, clinical and genetic research on these disorders considerably improved our knowledge of vitamin B12 absorption.This review describes basic and recent findings on the intestinal handling of vitamin B12 and its importance in health and disease.  相似文献   

17.
Vitamin B12 (Cyanocobalamin) is one of the vitamins believed to be produced exclusively by microorganisms. Although soil is a rich source of vitamin B12, systematic study as to possible uptake of this vitamin by the plant roots is lacking. This study was undertaken to investigate, under water culture conditions, the uptake of [57Co]-cyanocobalamin by soybean (Glycine max (L.) Merr.). In the range of 10 to 3200 mol L–1, uptake of vitamin B12 was a linear function of the vitamin concentration in the nutrient solution. Depending on the vitamin concentration, 12 to 34% of the total absorbed vitamin was transported to the plant shoots, with proportionally more vitamin B12 transported at higher vitamin concentrations. Aeration of the rooting medium with nitrogen gas significantly increased the total uptake and the percentage of vitamin transported to the shoots. Addition of respiration inhibitor dinitrophenol to the nutrient solution did not affect the total uptake or the partitioning of the vitamin. Root temperature (5–30°C) did not affect the total uptake but significantly altered the partitioning of the vitamin between the roots and the shoots. Foliar-applied vitamin B12 was not translocated to any considerable degree to other plant parts, indicating that phloem transport does not contribute to the distribution of this vitamin within the plant. It is suggested that adding manure (which is rich in this vitamin) to the soil could increase soil and thus plant content of vitamin B12. This could be of importance in raising the intake of this vitamin by people living by choice or necessity on vegetarian diets who are usually threatened by vitamin B12 deficiency.  相似文献   

18.
We determined the dissociation constant (Kd) of a series of nucleotides for the bovine skeletal muscle type II catalytic subunit by displacing lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) with increasing concentrations of competing nucleotide. The Kd of each nucleotide was calculated from the decreases in the fluorescence polarization of lin-benzo-ADP that accompany its displacement from the catalytic subunit. We found that modifications of the adenine moiety reduce nucleotide affinity for the enzyme. The effect was most pronounced with modifications at position 6 of the base. Replacement of the 3'-hydroxyl group of ribose with a hydrogen increased the affinity of the nucleotide; addition of phosphate to the 2'- or 3'-hydroxyl groups, on the other hand, decreased nucleotide affinity. MgATP and MgADP exhibited Kd's of about 10 microM. AMP, which contains a negatively charged alpha-phosphate, bound with reduced affinity (643 microM). Adenosine, which lacks a charged alpha-phosphate, bound with a higher affinity (32 microM). To learn more about the nature of the alpha-phosphate binding site, a series of uncharged and positively charged derivatives of the 5'-position on the ribose moiety was prepared. The uncharged derivatives bound with much greater affinity than the negatively charged AMP. The Kd's for 5'-tosyladenosine and 5'-iodo-5'-deoxyadenosine were 30 and 32 microM, respectively. Like the negatively charged AMP, positively charged derivatives also bound less tenaciously than the neutral species. The positively charged 5'-amino-5'deoxyadenosine, for example, exhibited a 15-fold higher Kd (506 microM) than the neutral congenors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Malignant cells (J111, L1210, W-256) and human embryonic cells (FL) are unable to survive and grow when homocystine replaces methionine in tissue culture media containing excess vitamin B12 and folic acid. Extracts of these same cells when grown in media containing methionine and more than adequate vitamin B12 and folic acid have diminished N5-methyltetrahydrofolate: homocysteine methyltransferase activities in the absence of added cyanocobalamin when compared with extracts of normal cells (adult rat thymus and liver fibroblasts). Extracts of human monocytic leukemia (J111) and human amnion cells (FL) have normal enzymatic activity in the presence of added cyanocobalamin whereas the rodent malignant cells (W-256 and L1210) have abnormally low activity in the absence or presence of added vitamin B12.  相似文献   

20.
Rat intrinsic factor was bound to vitamin B-12-Sepharose to produce intrinsic factor · vitamin B-12-Sepharose. Intestinal receptor for intrinsic factor · vitamin B-12 complex was purified from rat ileal extract by affinity chromatography using the intrinsic factor · vitamin B-12-Sepharose as an affinity adsorbent with recovery of 48.5% and specific activity increased 335 fold of original sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号