首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   

2.
Veillonella parvula cannot grow with succinate as sole energy source. However, succinate decarboxylation simultaneous with malate or lactate fermentation increased growth yields by 2.4-3.5 g (mol succinate)-1. Malate was fermented stoichiometrically to acetate and propionate whereas lactate fermentation produced more acetate and considerable amounts of H2. Aspartate was utilized only in the presence of succinate as co-substrate. Methylmalonyl-CoA decarboxylase and ATP-dependent pyruvate carboxylase, but not methylmalonyl-CoA:pyruvate transcarboxylase, were detected in cell-free extracts of malate- or lactate-grown cells. The energetic aspects of these fermentation patterns are discussed.  相似文献   

3.
Lactate Metabolism by Veillonella parvula   总被引:6,自引:2,他引:4       下载免费PDF全文
A strain of Veillonella parvula M4, which grows readily in lactate broth without a requirement for carbon dioxide, has been isolated from the oral cavity. Anaerobic, washed cells of this organism fermented sodium lactate to the following products (moles/100 moles of lactate): propionate, 66; acetate, 40; carbon dioxide, 40; and hydrogen, 14. Cells grew readily in tryptone-yeast extract broth with pyruvate, oxaloacetate, malate, and fumarate, but poorly with succinate. The fermentation of pyruvate, oxaloacetate, or lactate plus oxaloacetate by washed cells resulted in the formation of propionate and acetate in ratios significantly lower than those observed with lactate as the sole carbon source. This was primarily due to increased acetate production. Cell-free extracts were unable to degrade lactate but metabolized lactate in the presence of oxaloacetate, indicating the presence of malic-lactic transhydrogenase in this organism. Lactic dehydrogenase activity was not observed. Evidence is presented for oxaloacetate decarboxylase and malic dehydrogenase activities in extracts.  相似文献   

4.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

5.
The strains S3 and F11 which were isolated respectively from static and submerged tanks for vinegar production were identified as Acetobacter rancens. Neither strain grew in an ammonium defined medium containing ethanol, glucose, glycerol or organic acids as the sole carbon source. When casamino acids were added, they grew luxuriantly with lactate, ethanol or glycerol as the carbon source and less well with acetate or glucose. They grew, forming much acetic acid, in defined ethanol medium when alanine was supplied in place of casamino acids, but strain S3 showed a longer lag time than strain Fl1. This lag time could be shortened by addition of aspartate and glutamate. These amino acids could be replaced by succinate, fumarate, malate, lactate, pyruvate or propionate but not by glucose. Both strains required lactate or pyruvate in defined glucose medium but many other organic acids, which were effective in defined ethanol medium, were ineffective or slightly effective in glucose medium.  相似文献   

6.
Summary Sea mussels were exposed to nitrogen for various periods (0, 1, 3 and 6 days) and subsequently injected with 2,3-14C-succinic acid. After 2.5 h anaerobic incubation concentrations of succinate, some amino acids and volatile fatty acids were determined as well as the distribution of radioactivity.Conversion of the precursor decreased from 80 to 40%, due to increased dilution with endogenous succinate, accumulated during the anaerobic preincubation period.More than 80% of the activity of the converted 2,3-14C-succinic acid was incorporated into malate, aspartate, glutamate, alanine and propionate. This indicates that succinate is not only an end product of anaerobic glycogen breakdown, but remains an active intermediate of the tricarboxylic acid cycle, which can still operate under anaerobic conditions.Concentration and radioactivity of propionate were markedly increased after prolonged anoxia, which gives evidence that succinate is actively converted to propionate during anaerobiosis.Observed accumulation of glutamate during anoxia is explained by incomplete oxidation of pyruvate, which leaves the tricarboxylic acid cycle at the stage of 2-ketoglutarate.  相似文献   

7.
Cutaneous lipogenesis was studied, using a guinea pig ear slice incubation technique, for the following precursors: acetate, propionate, butyrate, glucose, pyruvate, lactate, succinate, citrate, and selected amino acids. Active lipogenesis was observed with short-chain fatty acids, glucose, pyruvate, lactate, and with the amino acids, alanine, leucine, and isoleucine. Glucose was shown to play an important role in cutaneous lipogenesis; it is a major precursor of lipid and the only compound able to stimulate lipogenesis. Its incorporation into lipid is unaffected by either insulin or epinephrine. The incorporation rates of glucose-1- and glucose-6-(14)C were equal, suggesting the possibility that generation of NADPH by the pentose-phosphate pathway is minimal. Citrate, succinate, and pyruvate all failed to stimulate the incorporation of acetate; on the other hand, citrate, isocitrate, malate, malonate, and ATP caused inhibition of the incorporation of glucose. Significant incorporation of tritium from tritiated water was observed, and the order of magnitude suggests that it can be used as an independent assessment of the rate of cutaneous lipogenesis. Bicarbonate was not only able to stimulate the rate of incorporation of a variety of precursors but was also incorporated into fatty acids to a measurable extent. The mode of incorporation of propionate was unusual, since propionate-1-(14)C was incorporated into fatty acids at more than double the rate for propionate-2-(14)C, suggesting incorporation of the carboxyl carbon without the rest of the molecule. Mechanisms are suggested to account for the carbon dioxide fixation, but we are unable to completely explain the anomalous results for propionate.  相似文献   

8.
Lactate utilization by Selenomonas ruminantium is stimulated in the presence of malate. Because little information is available describing lactate-plus-malate utilization by this organism, the objective of this study was to evaluate factors affecting utilization of these two organic acids by two strains of S. ruminantium. When S. ruminantium HD4 and H18 were grown in batch culture on DL-lactate and DL-malate, both strains coutilized both organic acids for the initial 20 to 24 h of incubation and acetate, propionate, and succinate accumulated. However, when malate and succinate concentrations reached 7 mM, malate utilization ceased, and with strain H18, there was a complete cessation of DL-lactate utilization. Malate utilization by both strains was also inhibited in the presence of glucose. S. ruminantium HD4 was unable to grow on 6 mM DL-lactate at extracellular pH 5.5 in continuous culture (dilution rate, 0.05 h-1) and washed out of the culture vessel. Addition of 8 mM DL-malate to the medium prevented washout on 6 mM DL-lactate at pH 5.5 and resulted in succinate accumulation. Addition of malate also increased bacterial protein, acetate, and propionate concentrations in continuous culture. These results suggest that 8 mM DL-malate enhances the ability of strain HD4 to grow on 6 mM DL-lactate at extracellular pH 5.5.  相似文献   

9.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

10.
《Insect Biochemistry》1991,21(3):327-333
In vivo and in vitro experiments were performed to examine the role of succinate and other potential precursors of the methylmalonyl-CoA used for methyl-branched hydrocarbon biosynthesis in the termite Zootermopsis nevadensis. The in vivo incorporation of [1,4-14C]succinate and [2,3-14C]succinate into hydrocarbon confirmed that succinate is a direct precursor to the methyl branch unit. The other likely precursors, the branched chain amino acids valine and isoleucine, were not efficiently incorporated into hydrocarbon. Carbon-13 NMR showed that one of the labeled carbons of [1,4-13C]succinate labeled position 6 of 5-methylalkanes and positions 6 and 18 of 5,17-dimethylalkanes, indicating that succinate, as a methylmalonyl-CoA unit, was incorporated as the third unit to form 5-methylheneicosane and as both the third and ninth units to form 5,17-dimethylheneicosane. Analysis of organic acids after the in vivo metabolism of [2,3-14C]succinate showed that succinate was converted to propionate and methylmalonate. Labeled succinate injected into the hemolymph was readily taken up by the gut tract. Isolated gut tissue efficiently converted succinate to acetate and propionate, both of which were released into the incubation media. Mitochondria from termite tissue (minus gut tract) converted succinate to methylmalonate and propionate only in the presence of malonic acid, an inhibitor of succinate dehydrogenase. The results of these studies show that while termite mitochondria are able to convert succinate to propionate and methylmalonate, most of the propionate used for methyl-branched hydrocarbon biosynthesis is produced by gut tract microorganisms. The propionate is then presumably transported through the hemolymph to epidermal cells for use in methyl-branched hydrocarbon biosynthesis.  相似文献   

11.
The effect of gentamicin on glucose production in isolated rabbit renal tubules was studied with lactate, propionate, malate, 2-oxoglutarate, and succinate as substrates. This antibiotic at 5 mM concentration inhibited gluconeogenesis from lactate by about 60% and that from either pyruvate or propionate by about 30%. In contrast, it did not alter the rate of glucose formation from other substrates studied. The rate of gluconeogenesis was higher at 1 mM propionate than at increasing concentrations of this substrate and was stimulated in the presence of 1 mM carnitine. However, the addition of carnitine did not affect the degree of inhibition of glucose formation by gentamicin. Since the mitochondrial free coenzyme A level was significantly lower in the presence of 10 than 1 mM propionate and increased on the addition of carnitine to the reaction medium, the inhibitory effect of propionate concentrations above 1 mM on gluconeogenesis in rabbit renal tubules may be due to a depletion of the free mitochondrial coenzyme A level, resulting in an inhibition of the mitochondrial coenzyme A-dependent reactions. In intact rabbit kidney cortex mitochondria incubated in State 4 as well as in Triton X-100-treated mitochondria, 5 mM gentamicin inhibited by about 30-40% the incorporation of 14CO2 into both pyruvate and propionate. The results indicate that the inhibitory effect of gentamicin on glucose formation in isolated kidney tubules incubated with lactate, pyruvate, or propionate is likely due to a decrease of the rate of carboxylation reactions.  相似文献   

12.
Inducible binding proteins for C4-dicarboxylic acids (DBP) and glucose (GBP) were isolated from Pseudomonas aeruginosa by extraction of exponential-phase cells with 0.2 M MgC12 (pH 8.5) and by an osmotic shock procedure without affecting cell viability. DBP synthesis was induced by growth on aspartate, alpha-ketoglutarate, succinate, fumarate, malate, and malonate but not by growth on acetate, citrate, pyruvate, or glucose. Binding of succinate by DBP was competitively inhibited by 10-fold concentrations of fumarate and malate but not by a variety of related substances. GBP synthesis and transport of methyl alpha-glucoside by whole cells were induced by growth on glucose or pyruvate plus galactose, 2-deoxyglucose, or methyl alpha-glucoside but not by growth on gluconate, succinate, acetate, or pyruvate. The binding of radioactive glucose by GBP was significantly inhibited by 10-fold concentrations of glucose, galactose, and glucose-1-phosphate but not by the other carbohydrates tested. The binding of glucose by GBP or succinate by DBP did not result in any chemical alteration of the substrates.  相似文献   

13.
《Insect Biochemistry》1980,10(4):449-455
Anaerobic metabolism was investigated in Callitroga macellaria larvae, using isotopic, chromatographic and enzymatic methods after in vivo and in vitro incubations.The study of anaerobic glucose metabolism shows that the classical pathway from glucose to lactate may not be the only pathway of anaerobic energy gain. End products of anaerobic [14C]-glucose catabolism are lactate, acetate, alanine, pyruvate and polyols.During four hours of anaerobiosis the concentrations of glutamate, glutamine, aspartate, citrate and isocitrate, malate decreased, whereas asparagine, oxaloacetate and α-ketoglutarate concentrations remained constant and the succinate concentration increased. In vitro incubations with [14C]-glutamate confirmed that glutamate utilization occurred anaerobically. The pathway is suggested to proceed from glutamate via α-ketoglutarate to succinate, to proline and to acetate possibly via citrate.The results indicate that anaerobic metabolism in C. macellaria larvae may differ significantly from other known pathways.  相似文献   

14.
A new sulfate-reducing bacterium, strain 86FS1, was isolated from a deep-sea sediment in the western Mediterranean Sea with sodium lactate as electron and carbon source. Cells were ovoid, gram-negative and motile. Strain 86FS1 contained b- and c-type cytochromes. The organism was able to utilize propionate, pyruvate, lactate, succinate, fumarate, malate, alanine, primary alcohols (C(2)-C(5)), and mono- and disaccharides (glucose, fructose, galactose, ribose, sucrose, cellobiose, lactose) as electron donors for the reduction of sulfate, sulfite or thiosulfate. The major products of carbon metabolism were acetate and CO(2), with exception of n-butanol and n-pentanol, which were oxidized only to the corresponding fatty acids. The growth yield with sulfate and glucose or lactate was 8.3 and 15 g dry mass, respectively, per mol sulfate. The temperature limits for growth were 10 degrees C and 30 degrees C with an optimum at 25 degrees C. Growth was observed at salinities ranging from 10 to 70 g NaCl l(-1). Sulfide concentrations above 4 mmol l(-1) inhibited growth. The fatty acid pattern of strain 86FS1 resembled that of Desulfobulbus propionicus with n-14:0, n-16:1omega7, n-16:1 omega5, n-17:1 omega6 and n-18:1 omega7 as dominant fatty acids. On the basis of its phylogenetic position and its phenotypic properties, strain 86FS1 affiliates with the genus Desulfobulbus and is described as a new species, Desulfobulbus mediterraneus sp. nov.  相似文献   

15.
We examined the effects of heme on the growth and fermentations of Bacteroides species. Bacteroides fragilis ATCC 25285 required heme for growth and produced malate and lactate as major products of glucose fermentation when the concentration of heme was 1 ng/ml. With 1 microgram of heme per ml, malate was not formed, lactate production decreased, and succinate and acetate were the major fermentation products. B. eggerthii ATCC 27754 grew without heme, with the production of mainly malate and lactate from glucose. Its fermentation with 1 microgram of heme per ml was similar to that of B. fragilis grown with the same concentration of heme. B. splanchicus VPI 6842 grew without heme, with the production of mainly malate, acetate, and H2 from glucose. With 1 microgram of heme per ml, malate disappeared, H2 decreased significantly, and succinate, acetate, and butyrate were the major products. The addition of vitamin B12 to media containing 1 microgram of heme per ml caused all species to produce propionate at the expense of succinate and, with B. splanchnicus, also at the expense of butyrate. Thus, the concentration of heme and the presence of vitamin B12 significantly influenced the course of glucose fermentation by these bacteria.  相似文献   

16.
Background: Short chain fatty acids (SCFAs) affect various intestinal functions. Mucus is an important physiological component of the intestinal mucosal barrier. However, the effect of SCFAs or other organic acids on the intestinal mucus release is poorly understood. The aim of this study was to investigate whether lumen SCFA stimulates mucus release into the rat colon. Methods: A solution of SCFA, lactate or succinate was infused into the colon of anesthetized rats, and we then measured the hexose content of the effluent. We also examined the influence of cholinergic antagonists on the effects of SCFA. Results: A SCFA mixture (75 mM acetate, 35 mM propionate and 20 mM butyrate) or individual SCFAs (130 mM) increased the mucus release into the colon in a similar manner. The individual SCFAs, but not lactate or succinate, stimulated colonic mucus secretion in similar concentration-dependent manners. Butyrate stimulated colonic mucus secretion at 20 mM, but acetate, propionate, lactate and succinate at this concentration did not. Pretreatment with an anti-cholinergic agent diminished the stimulatory effects of SCFAs on mucus secretion. Conclusions: Lumen SCFAs, but not lactate or succinate, stimulate mucus release from the rat colon via a cholinergic nerve mechanism.  相似文献   

17.
1. Metabolism of propionate by sheep-liver mitochondria was stimulated catalytically by alpha-oxoglutarate, pyruvate, citrate and isocitrate. Succinate was stimulatory at higher concentrations, but fumarate and malate were inert. These effects were all independent of the presence of ATP, succinate being less effective when ATP was present. 2. Compared with the metabolism of added succinate, propionate metabolism was resistant to malonate inhibition, but only in the presence of added ATP. In the absence of ATP propionate metabolism was more sensitive to malonate inhibition than was the metabolism of succinate. 3. In the absence of malonate, and at malonate concentrations in the range 5-100mm, alpha-oxoglutarate increased the rate of fixation of [2-(14)C]propionate by about 50% without altering the nature of the fixation products. 4. Metabolism of [1-(14)C]-propionate in the presence of 50mm-malonate was accompanied by accumulation of about half the propionate consumed as succinate. When alpha-oxoglutarate was present in addition part of the alpha-oxoglutarate was metabolized and the rate of propionate consumption was increased. The total succinate that accumulated corresponded to the alpha-oxoglutarate consumed plus about half the propionate metabolized. 5. When [1-(14)C]propionate was metabolized in the absence of malonate about 70% of the generated succinate was oxidized to fumarate or beyond. The addition of malonate decreased the rate of propionate metabolism, and decreased to about half the fraction of generated succinate oxidized. 6. When propionate and 10mm-succinate were metabolized together, the total oxidation of succinate was greater than that with 10mm-succinate alone. The increment in succinate oxidation corresponded to about half the propionate metabolized in the presence or absence of malonate or ATP. 7. It is suggested that the metabolism of propionate is specifically limited by the rate of oxidation of the generated succinate, and that the succinate oxidase concerned is distinct from that responsible for the oxidation of added succinate. 8. The results are discussed in terms of the mode of action of certain stimulants and inhibitors of propionate metabolism. It is suggested that many of these act by stimulation or inhibition of the specific succinate oxidase that limits propionate metabolism.  相似文献   

18.
On the basis of enzyme activities detected in extracts of Selenomonas ruminantium HD4 grown in glucose-limited continuous culture, at a slow (0.11 h-1) and a fast (0.52 h-1) dilution rate, a pathway of glucose catabolism to lactate, acetate, succinate, and propionate was constructed. Glucose was catabolized to phosphoenol pyruvate (PEP) via the Emden-Meyerhoff-Parnas pathway. PEP was converted to either pyruvate (via pyruvate kinase) or oxalacetate (via PEP carboxykinase). Pyruvate was reduced to L-lactate via a NAD-dependent lactate dehydrogenase or oxidatively decarboxylated to acetyl coenzyme A (acetyl-CoA) and CO2 by pyruvate:ferredoxin oxidoreductase. Acetyl-CoA was apparently converted in a single enzymatic step to acetate and CoA, with concomitant formation of 1 molecule of ATP; since acetyl-phosphate was not an intermediate, the enzyme catalyzing this reaction was identified as acetate thiokinase. Oxalacetate was converted to succinate via the activities of malate dehydrogenase, fumarase and a membrane-bound fumarate reductase. Succinate was then excreted or decarboxylated to propionate via a membrane-bound methylmalonyl-CoA decarboxylase. Pyruvate kinase was inhibited by Pi and activated by fructose 1,6-bisphosphate. PEP carboxykinase activity was found to be 0.054 mumol min-1 mg of protein-1 at a dilution rate of 0.11 h-1 but could not be detected in extracts of cells grown at a dilution rate of 0.52 h-1. Several potential sites for energy conservation exist in S. ruminantium HD4, including pyruvate kinase, acetate thiokinase, PEP carboxykinase, fumarate reductase, and methylmalonyl-CoA decarboxylase. Possession of these five sites for energy conservation may explain the high yields reported here (56 to 78 mg of cells [dry weight] mol of glucose-1) for S. ruminantium HD4 grown in glucose-limited continuous culture.  相似文献   

19.
Effects of some organic acids and monoterpenes on production of beta-thujaplicin were studied in Cupressus lusitanica suspension cultures. The fungal elicitor-induced biosynthesis of beta-thujaplicin was promoted by the feedings of malate, pyruvate, fumarate, succinate, and acetate. These results suggest some relationships between acetate/pyruvate metabolism and beta-thujaplicin biosynthesis, or between tricarboxylic acid cycle and beta-thujaplicin biosynthesis. Feedings of C. lusitanica suspension cultures with some monoterpenes inhibited elicitor-triggered beta-thujaplicin biosynthesis, but 2-carene and terpinyl acetate feedings significantly improved the beta-thujaplicin production of C. lusitanica suspension cultures. These results indicate a possible involvement of terpinyl acetate and 2-carene in beta-thujaplicin biosynthesis, as well as potential uses of these monoterpenes in large-scale beta-thujaplicin production.  相似文献   

20.
The growth of Alkaliflexus imshenetskii and concentrations of metabolites produced by this microorganism during growth on various organic substrates were studied. It was shown that, although the composition and quantitative ratios of the fermentation products depended on the substrates utilized, acetate and succinate were always the major metabolites, while only minor amounts of formate were produced. During growth on xylan and starch, diauxy was observed caused by the successive decomposition of oligosaccharides and monosaccharides. It was demonstrated that, when grown on cellobiose, A. imshenetskii is capable of succinate fermentation mediated by phosphoenolpyruvate carboxykinase, pyruvate kinase, fumarate reductase, pyruvate ferredoxin oxidoreductase, malate dehydrogenase, and methylmalonyl-CoA decarboxylase. Succinate may be both the intermediate and final product of the A. imshenetskii metabolism, being fermented to propionate by methylmalonyl-CoA decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号