共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
All five subunits of yeast mitochondrial F1-ATPase have been isolated by reverse-phase high performance liquid chromatography. This procedure allows micro-preparative purification of all the subunits with 60% recoveries. The complete amino acid sequence of the epsilon-subunit has been established. This has been achieved by the sequence analysis of subnanomole amounts of the intact molecule and that of peptides derived by enzymatic digestion with endoproteinase Arg-C and by chemical cleavage with hydroxylamine. Yeast ATP synthase epsilon-subunit is composed of 61 residues with a calculated molecular mass of 6612 Da. This polypeptide is rather basic since it contains 7 basic residues and 3 acidic residues. This study shows a slight similarity with the bovine epsilon-subunit ATP synthase since there are 16 identical residues. 相似文献
3.
Amino acid composition of a new mitochondrially translated proteolipid isolated from yeast mitochondria and from the OSATPase complex 总被引:2,自引:0,他引:2
J Velours M Esparza B Guerin 《Biochemical and biophysical research communications》1982,109(4):1192-1199
A new mitochondrially translated 10000 Mr proteolipid was isolated from yeast mitochondria. This proteolipid was purified by phosphocellulose chromatography, followed by reverse phase HPLC. This proteolipid was also extracted from the oligomycin sensitive ATPase complex and purified by HPLC. Its amino acid composition is different from the Dicyclohexylcarbodiimide binding protein. 相似文献
4.
Amino acid sequence of bovine white matter proteolipid 总被引:13,自引:0,他引:13
M B Lees B H Chao L F Lin M Samiullah R A Laursen 《Archives of biochemistry and biophysics》1983,226(2):643-656
The sequence of the bovine white matter proteolipid has been studied by a combination of proteolytic digestion and chemical cleavage at tryptophan residues. Alignment of peptides obtained by digestion with trypsin, chymotrypsin, clostripain, and Staphylococcus aureus protease gave the sequence of 52 residues at the amino terminus, 96 residues at the carboxyl terminus, and several additional segments. Peptides obtained by treatment of the protein with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine confirmed the alignment and extended the sequence. This information, combined with that of other investigators, permits us to propose the primary structure for the entire protein. On the basis of the sequence determination, the molecular weight of the proteolipid protein is 29,869. 相似文献
5.
Export of mitochondrially synthesized lysophosphatidic acid 总被引:1,自引:0,他引:1
We have previously demonstrated that the properties of mitochondrial glycerophosphate acyltransferase are in keeping with the asymmetric distribution of fatty acids found in naturally occurring cell glycerophospholipids. We are now examining if mitochondria can export lysophosphatidic acid and if it is converted to other phospholipids by the microsomes. Rat liver mitochondria were incubated for 3 min with [2-3H]-sn-glycerol 3-phosphate, palmityl-CoA, and N-ethylmaleimide in the acyltransferase assay medium. In the absence of bovine serum albumin in the medium, greater than 80% of the phospholipids sedimented with the mitochondria. In the presence of the albumin, the lysophosphatidic acid was present entirely in the supernatant fluid. The very little phosphatidic acid that was formed sedimented with the mitochondria. Addition of microsomes to the supernatant fluid followed by a further incubation of 5 min converted 61% of the lysophosphatidic acid to phosphatidic acid which sedimented with the microsomes. When mitochondria and microsomes were incubated together in the assay medium containing albumin and N-ethylmaleimide, the product contained more phosphatidic and less lysophosphatidic acid. When the subcellular components were reisolated by differential centrifugation, 70% of the phosphatidic acid sedimented with the microsomes and the lysophosphatidic acid stayed in the postmicrosomal supernatant. Thus, under appropriate conditions mitochondrially produced lysophosphatidic acid can leave the organelles and this phospholipid can be converted to phosphatidic acid by the microsomes. 相似文献
6.
The mitochondrial ATP synthase is a molecular motor, which couples the flow of protons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the alpha-, beta-, and gamma-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the gamma-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. 相似文献
7.
Amino acid transport in a polyaromatic amino acid auxotroph of Saccharomyces cerevisiae 总被引:2,自引:1,他引:2 下载免费PDF全文
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect. 相似文献
8.
Amino acid sequence of the phosphorylation site of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase 总被引:4,自引:0,他引:4
J Rittenhouse P B Harrsch J N Kim F Marcus 《The Journal of biological chemistry》1986,261(9):3939-3943
Fructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae has properties similar to other gluconeogenic fructose-1,6-bisphosphatases, but an unusual characteristic of the yeast enzyme is that it can be phosphorylated in vitro by cAMP-dependent protein kinase. Phosphorylation also occurs in vivo, presumably as part of a signalling mechanism for the enzyme's degradation. To probe the structural basis for the phosphorylation of yeast fructose-1,6-bisphosphatase, we have developed an improved procedure for the purification of the enzyme and then performed sequence studies with the in vitro-phosphorylated protein as well as with tryptic and chymotryptic peptides containing the phosphorylation site. As a result of these studies, we have determined that yeast fructose-1,6-bisphosphatase has the following 24-residue NH2-terminal amino acid sequence: Pro-Thr-Leu-Val-Asn-Gly-Pro-Arg-Arg-Asp-Ser-Thr-Glu-Gly- Phe-Asp-Thr-Asp-Ile-Ile-Thr-Leu-Pro-Arg. The site of phosphorylation is located at Ser-11 in the above sequence. The amino acid sequence around the site of phosphorylation contains the sequence - Arg-Arg-X-Ser- associated with many of the better substrates of cAMP-dependent protein kinase. The sequence of residues 15-24 above is highly homologous with the sequence of residues 6-15 of pig kidney fructose-1,6-bisphosphatase, showing 7 out of 10 residues in identical positions. The yeast enzyme, however, has a dissimilar NH2-terminal region which extends beyond the NH2 terminus of mammalian fructose-1,6-bisphosphatases and contains a unique phosphorylation site. 相似文献
9.
C Navarre M Ghislain S Leterme C Ferroud J P Dufour A Goffeau 《The Journal of biological chemistry》1992,267(9):6425-6428
The purified plasma membrane H(+)-ATPase of Schizosaccharomyces pombe and Saccharomyces cerevisiae display, in addition to the catalytic subunit of 100 kDa, a highly mobile component, soluble in chloroform/methanol. Chloroform/methanol extraction of S. cerevisiae plasma membranes led to isolation of a low molecular weight proteolipid identical to that present in purified H(+)-ATPase. NH2-terminal amino acid sequencing revealed a 38-residue polypeptide with a calculated molecular mass of 4250 Da. The polypeptide lacks the first two NH2-terminal amino acids as compared with the deduced sequence of the PMP1 gene (for plasma membrane proteolipid) isolated by hybridization with an oligonucleotide probe corresponding to an internal amino acid sequence of the proteolipid. The polypeptide is predicted to contain an NH2-terminal transmembrane segment followed by a very basic hydrophilic domain. 相似文献
10.
Amino acid sequence of Escherichia coli citrate synthase 总被引:6,自引:0,他引:6
Detailed evidence for the amino acid sequence of allosteric citrate synthase from Escherichia coli is presented. The evidence confirms all but 11 of the residues inferred from the sequence of the gene as reported previously [Ner, S. S., Bhayana, V., Bell, A. W., Giles, I. G., Duckworth, H. W., & Bloxham, D. P. (1983) Biochemistry 22, 5243]; no information has been obtained about 10 of these (residues 101-108 and 217-218), and we find aspartic acid rather than asparagine at position 10. Substantial regions of sequence homology are noted between the E. coli enzyme and citrate synthase from pig heart, especially near residues thought to be involved in the active site. Deletions or insertions must be assumed in a number of places in order to maximize homology. Either of two lysines, at positions 355 and 356, could be formally homologous to the trimethyllysine of pig heart enzyme, but neither of these is methylated. It appears that E. coli and pig heart citrate synthases are formed of basically similar subunits but that considerable differences exist, which must explain why the E. coli enzyme is hexameric and allosterically inhibited by NADH, while the pig heart enzyme is dimeric and insensitive to that nucleotide. 相似文献
11.
Y Masui T Tanaka N Chino H Kita S Sakakibara 《Biochemical and biophysical research communications》1979,86(4):982-987
Analogs of the mating factor of , Trp1- Trp3-Leu-Gln-Leu6-Lys7-Pro8-Gly-Gln-Pro11-Met12-Tyr13, from which amino acids were eliminated or substituted for other amino acid, were synthesized. These analogs showed lower biological activity than the natural mating factor if assayed after 6 hours incubation with -mating type cells of . However, if assayed after 24 or 48 hours incubation, the situation changed, i.e. the analogs in which Leu6 or Lys7 were replaced by the corresponding D-isomer, showed higher mating factor activity than the unsubstituted mating factor. The same result was obtained with the analogs in which Met was replaced by norleucine. 相似文献
12.
Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. 下载免费PDF全文
Nitrogen-starved yeast derepress a general amino acid permease which transports basic and hydrophobic amino acids. Although both groups of amino acids are metabolized, the derivatives of the basic amino acids are retained by the cells, whereas those of the hydrophobic amino acids are released as acidic and neutral deaminated derivatives. The release of the deaminated derivatives of the hydrophobic amino acids only occurs in the presence of glucose, which presumably produces amino acceptors. The accumulation of intracellular amino acids results in trans-inhibition of the uptake of exogenous amino acids whether the intracellular amino acid is a basic amino acid or the product of intracellular transamination from a hydrophobic amino acid. Variation of permease and transaminase activity was measured during growth under repressed (ammonia-grown) and derepressed (proline-grown) conditions. Maximum levels for both activities occurs at the mid-exponential phase. 相似文献
13.
A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in Saccharomyces cerevisiae. 总被引:5,自引:4,他引:5 下载免费PDF全文
Subunit II of cytochrome oxidase is encoded by the mitochondrial OXI1 gene in Saccharomyces cerevisiae. The temperature-sensitive nuclear pet mutant ts2858 has an apparent higher mol. wt. subunit II when analyzed on lithium dodecylsulfate (LiDS) polyacrylamide gels. However, on LiDS-6M urea gels the apparent mol. wt. of the wild-type protein exceeds that of the mutant. Partial revertants of mutant ts2858 that produce both the wild-type and mutant form of subunit II were isolated. The two forms of subunit II differ at the N-terminal part of the molecule as shown by constructing and analyzing nuclear ts2858 and mitochondrial chain termination double mutants. The presence of the primary translation product in the mutant and of the processed form in the wild-type lacking 15 amino-terminal residues was demonstrated by radiolabel protein sequencing. Comparison of the known DNA sequence with the partial protein sequence obtained reveals that six of the 15 residues are hydrophilic and, unlike most signal sequences, this transient sequence does not contain extended hydrophobic parts. The nuclear mutation ts2858 preventing post-translational processing of cytochrome oxidase subunit II lies either in the gene for a protease or an enzyme regulating a protease. 相似文献
14.
Relationships between amino acid auxotrophy and N-dodecyloxy-carboxy-methyl-N-N-N-trimethyl ammonium chloride (IM) sensitivity have been investigated in isogenic yeast strains Saccharomyces cerevisiae and their meiotic segregants. It has been found, that auxotrophy increases the level of sensitivity to this salt markedly. A gene conferring resistance to that drug cancels the auxotrophy-dependent sensitivity. 相似文献
15.
The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. 总被引:23,自引:18,他引:23 下载免费PDF全文
The SUC2 gene of Saccharomyces cerevisiae encodes two differently regulated mRNAs (1.8 and 1.9 kilobases) that differ at their 5' ends. The larger RNA encodes a secreted, glycosylated form of invertase and the smaller RNA encodes an intracellular, nonglycosylated form. We have determined the nucleotide sequence of the amino-terminal coding region of the SUC2 gene and its upstream flanking region and have mapped the 5' ends of the SUC2 mRNAs relative to the DNA sequence. The 1.9-kilobase RNA contains a signal peptide coding sequence and presumably encodes a precursor to secreted invertase. The 1.8-kilobase RNA does not include the complete coding sequence for the signal peptide. The nucleotide sequence data prove that SUC2 is a structural gene for invertase, and translation of the coding information provides the complete amino acid sequence of an S. cerevisiae signal peptide. 相似文献
16.
R Betz J W Crabb H E Meyer R Wittig W Duntze 《The Journal of biological chemistry》1987,262(2):546-548
The molecular structure of a-factor, the mating hormone produced by mating type a cells of Saccharomyces cerevisiae, has been investigated. In culture filtrates of a cells four oligopeptides (a1 to a4) exhibiting a-factor activity have been found. These peptides have been isolated and their amino acid sequences have been determined. The a-factor peptides comprise two (apparently identical) pairs, a1/a2 and a3/a4, which differ in an interchange at position 6 of a valine in a1/a2 for a leucine in a3/a4. a1 and a4, which can be obtained by oxidation with H2O2 of purified a2 and a3, respectively, obviously represent oxidation artifacts formed under the conditions of culture. The amino acid sequences determined for the a-factor peptides are Tyr-Ile-Ile-Lys-Gly-Val Leu-Phe-Trp-Asp-Pro-Ala-Cys. Several lines of evidence suggest that the carboxyl-terminal cysteine residue is S-alkylated by a hydrophobic moiety. 相似文献
17.
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk. 相似文献
18.
Spores transferred to germination medium incorporated exogenous lysine into protein within 20 min but required 2-3 to begin incorporation of exogenous proline or alanine. During this time considerable uptake of amino acids into the intracellular pool occurred. Cycloheximide added to the germination medium inhibited incorporation of lysine into protein but did not lessen in accumulation in the pool. Spore germination was inhibited by cycloheximide. 相似文献
19.
Andrianaivomananjaona T Moune-Dimala M Herga S David V Haraux F 《Biochimica et biophysica acta》2011,1807(2):197-204
The N-terminal part of the inhibitory peptide IF1 interacts with the central γ subunit of mitochondrial isolated extrinsic part of ATP synthase in the inhibited complex (J.R. Gledhill, M.G. Montgomery, G.W. Leslie, J.E. Walker, 2007). To explore its role in the different steps of IF1 binding, kinetics of inhibition of the isolated and membrane-bound enzymes were investigated using Saccharomyces cerevisiae IF1 derivatives modified in N-terminal extremity. First, we studied peptides truncated in Nter up to the amino acid immediately preceding Phe17, a well-conserved residue thought to play a key role. These deletions did not affect or even improve the access of IF1 to its target. They decreased the stability of the inhibited complex but much less than previously proposed. We also mutated IF1-Phe17 and found this amino acid not mandatory for the inhibitory effect. The most striking finding came from experiments in which PsaE, a 8 kDa globular-like protein, was attached in Nter of IF1. Unexpectedly, such a modification did not appreciably affect the rate of IF1 binding. Taken together, these data show that IF1-Nter plays no role in the recognition step but contributes to stabilize the inhibited complex. Moreover, the data obtained using chimeric PsaE-IF1 suggest that before binding IF1 presents to the enzyme with its middle part facing a catalytic interface and its Nter extremity folded in the opposite direction. 相似文献
20.
Mating factor is a peptide excreted into the culture fluid by alpha-mating type cells of Saccharomyces cerevisiae X-2180 1B. The purification of the mating factor was carried out by ion exchange chromatography on phosphocellulose and Amberlite IRC 50 columns, followed by gel filtration on a Sephadex LH 20 column. The factor thus prepared was a peptide composed of Lys1, His1, Trp2, Gln2, Pro2, Gly1, Met1, Leu2 and Tyr1, and was able to induce morphological changes on alpha-mating type cells at a concentration of 5 pg/ml. The amino acid sequence of the mating factor was determined by the manual Edman degradation method using intact mating factor and its thermolytic peptides. The C-terminal amino acid residue was determined by digesting the factor with carboxypeptidase A. The complete amino acid sequence of the mating factor was established to be as follows: Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr. 相似文献