首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have tested 21 different basis sets of synthetic DNA circular dichroism spectra and have slected one for use in spectral analyses of natural DNAs. This “standard” set consists of spectra of eight polymers: poly[d(A-A-T)·d(A-T-T)], poly[d(A-G-G)·d(C-C-T)], poly[d(A-T)·d(A-T)], poly[d(G-C)·d(G-C)], poly[d(A-G)·d(C-T)], poly[d(A-C)·d(G-T)], poly[d(A-T-C)·d(G-A-T)], and poly[d(A-G-C)·d(G-C-T)]. This basis set, applied according to the first-neighbor polymer procedure of Gray and Tinoco, allows a more uniformly accurate spectral analysis of six natural complex DNAs and eight (A+T)-rich satellite DNAs for base composition and first-neighbor frequencies than was previously possible. We find that spectra of poly[d(A)·d(T)] and/or poly[d(A-C-T-)·d(A-G-T)] are not generally required for good analysis results but we show in this and the following paper that these spectra are needed for the most accurate analyses of some satellite DNAs.  相似文献   

2.
We have synthesized and studied the CD spectra of five new double-stranded RNA polymers: poly[r(A-G)·r(C-U)], poly[r(A-U-C)·r(G-A-U)], poly[r(A-C-U)·r(A-G-U)], poly[r(A-A-C)·r(G-U-U)], and poly[r(A-C-C)·r(G-G-U)]. Together with previously published spectra of seven other RNA sequences, the spectra of these new sequences provide a library sufficient to approximate the spectra of all other RNA sequences by first-neighbor formulas and, in addition, give four spectra with which we may test the validity of first-neighbor approximations. (1) We find that the spectra of RNA sequence isomers are very different, but that the spectra essentially do obey first-neighbor relationships. (2) We have derived tentative first-neighbor assignments of negative bands at about 295 and 210 nm in the CD spectra. (3) A test of spectral independence shows that among the 12 polymer spectra there are at least seven significant independent spectral shapes, one less than the eight needed to give the most accurate spectral analysis of an unknown RNA sequence for its first-neighbor frequencies. (4) Spectra are calculated for RNAs of random base composition, approximating natural RNAs having complex sequences. (5) A T-matrix of spectral components assigned to the first-neighbor base pairs is derived from 10 of the spectra. This matrix allows an estimation of the CD spectrum of any other known RNA sequence or an analysis of the spectrum of an unknown sequence for its distribution of first-neighbor base-pair frequencies. (6) Test analyses of two of the synthetic polymers and of two natural RNAs set a probable limit on the accuracy of first-neighbor frequency determinations using this T-matrix. (7) Finally, we summarize in an appendix the melting temperatures for all the RNA and corresponding DNA sequences; it appears that the Tm values of both DNAs and RNAs approximately obey first-neighbor relationships.  相似文献   

3.
CD spectra were obtained for eight synthetic double-stranded DNA polymers down to at least 175 nm in the vacuum uv. Three sets of sequence isomers were studied: (a) poly[d(A-C).d(G-T)] and poly[d(A-G).d(C-T)], (b) poly[d(A-C-C).d(G-G-T)] and poly[d(A-C-G).d(C-G-T)], and (c) poly[d(A).d(T)], poly[d(A-T).d(A-T)], poly[d(A-A-T).d(A-T-T)], and poly[d(A-A-T-T).d(A-A-T-T)]. There were significant differences in the CD spectra at short wavelengths among each set of sequence isomers. The (G.C)-containing sequences had the largest vacuum uv bands, which were positive and in the wavelength range of 180-191 nm. There were no large negative bands at longer wavelengths, consistent with the polymers all being in right-handed conformations. Among the set of sequences containing only A.T base pairs, poly[d(A).d(T)] had the largest vacuum uv CD band, which was at 190 nm. This CD band was not present in the spectra of the other (A.T)-rich polymers and was absent from two first-neighbor estimations of the poly[d(A).d(T)] spectrum obtained from the other three sequences. We concluded that the sequence dependence of the vacuum uv spectra of the (A.T)-rich polymers was due in part to the fact that poly[d(A).d(T)] exists in a noncanonical B conformation.  相似文献   

4.
We present absorption and circular dichroism (CD) spectra for the synthetic polymers poly d(AAT):d(AAT) and poly r(AAU):r(AAU), in both native and heat-denatured forms. As a means of evaluating the first-neighbor hypothesis, the CD spectra are compared with approximations derived from spectra of other synthetic polymers containing the same first-neighbor sequences. This is the first instance where such a comparison has been possible using spectra of double-stranded RNA sequences, and the agreement between the measured and approximated spectra for poly r(AAU):r(AUU) is surprisingly good. We have also subjected the CD spectrum of poly d(AAT):d(AAT) to a previously published analytical procedure for obtaining estimates of first-neighbor frequencies. In this first independent test of the procedure, we find that the analysis does infer the existence of a majority (86%) of AA, TT, AT, and TA first neighbors but does not precisely indicate their relative proportions.  相似文献   

5.
From an analysis of their circular dichroism spectra, we find that the four (A + T)-rich satellite DNAs of Drosophila nasutoides have distributions of first-neighbor base paris that resemble those previously found for other (A + T)-rich Drosophila satellites. We also apply our spectral analysis procedure for the first time to two (G + C)-rich satellite DNAs, those from the hermit crab Pagurus pollicaris. We find that P. pollicaris satellite I cannot be accurately analyzed with our standard set of spectral components and that P. pollicaris satellite II appears to be much like the synthetic polymer poly[d(A-G-C-)·d(G-C-T)] in its first-neighbor content.  相似文献   

6.
Ultraviolet circular dichroism spectra have been obtained for native and heat-denatured Drosophila virilis satellite DNAs I, II and III. Gall &; Atherton (1974) have found that these DNAs have simple, unique sequences. We compare here the circular dichroism spectra of these satellite sequences with the circular dichroism spectra of synthetic DNAs of simple sequences which are combined in first-neighbor calculations. We also apply an analytical procedure for determining nearest-neighbor frequencies from the DNA spectra (Allen et al., 1972). The results are an indication of the potential usefulness and present limitations of circular dichroism measurements in confirming or determining the nearestneighbor frequencies of satellite DNAs of simple sequences.  相似文献   

7.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

8.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

9.
Several synthetic DNAs were prepared containing the unusual bases 7-deazaadenine (c7A) and 7-deazaguanine (c7G). As judged from changes in melting temperatures these modified DNAs bound ethidium to a similar extent as the parent polymers. However, duplexes such as poly [d(Tc7G)].poly[d(CA)] and poly[d-(TC)].poly[d(c7GA]) gave no enhancement of ethidium fluorescence in a standard ethidium fluorescence assay. Fluorescence spectra in the range 400-650 nm showed that ethidium bound to poly[d(TC)].poly[d(Gc7A)] gave 70% of the fluorescence of the parent polymer poly[d(TC)].poly[d(GA)], whereas the fluorescence of poly[d(TC)].poly[d(c7GA)] was essentially 0%. Even the intrinsic fluorescence of ethidium in solution was quenched in the presence of poly[d(TC)].poly[d(c7GA)]. Binding constants were estimated from Scatchard analysis and were 4.8, 3.4, and 2.0 x 10(6) M-1 for poly[d(TC)].poly[d(GA)], poly[d(TC)].poly[d(Gc7A)], and poly[d(TC)].poly[d(c7GA)], respectively. This reduction in binding constant cannot account for the loss of fluorescence. The UV spectrum of ethidium was measured in the presence of these DNAs, and some significant differences were noted. Presumably the presence of 7-deazaguanine alters the electronic structure of bound ethidium so that it can no longer fluoresce.  相似文献   

10.
R Lyng  A Rodger  B Nordén 《Biopolymers》1992,32(9):1201-1214
A systematic theoretical study of the CD of [poly(dA-dT)]2 and its complexes with achiral small molecules is presented. The CD spectra of [poly(dA-dT)]2 and of poly(dA):poly(dT) are calculated for various DNA structures using the matrix method. The calculated and experimental spectra agree reasonably well for [poly(dA-dT)]2 but less well for poly(dA):poly(dT). The calculated CD spectrum of [poly(dA-dT)]2 fails to reproduce the wavelength region of 205-245 nm of the experimental spectrum. This discrepancy can be explained by a magnetic dipole allowed transition contributing significantly to the CD spectrum in this region. The induced CD of a transition moment of a molecule bound to [poly(dA-dT)]2 is also calculated. As was the case for [poly(dG-dC)]2, the induced CD of a groove bound molecule is one order of magnitude stronger than that of an intercalated molecule. The calculations also show considerable differences between pyrimidine-purine sites and purine-pyrimidine sites. Both signs and magnitudes of the CD induced into ligands bound in the minor groove agree with experimental observations.  相似文献   

11.
Although most duplex DNAs are not immunogenic some synthetic DNAs such as poly[d(Tm5C)].poly[d(GA)] are weakly immunogenic allowing the production of monoclonal antibodies. The specificity of one of these antibodies, Jel 172, was investigated in detail by a competitive solid-phase radioimmune assay. Jel 172 bound well to poly[d(TC)].poly[d(GA)] but not to other duplex DNAs such as poly[d(TTC)].poly[d(GAA)] and poly[d(TCC)].poly[d(GGA)]. The binding to poly[d(Br5UC)].poly[d(GA)] was enhanced while that to poly[d(TC)].poly[d(IA)] was decreased compared to poly[d(TC)].poly[D(GA)]. Thus, not only is the antibody very specific for a sequence of duplex DNA but it also appears to recognize functional groups in both grooves of the helix.  相似文献   

12.
The circular dichroism spectra of many natural DNAs and double-stranded synthetic polynucleotides were obtained. The eight first-neighbor contributions to the CD spectra of a DNA have been extracted from these data. Therefore, the CD spectrum for any DNA with known first-neighbor frequencies may be easily calculated. For a natural DNA the CD spectrum may be approximated by assuming the first-neighbor frequencies have the most probable values consistent with the base composition. Under favorable conditions, the measured CD spectrum can be used to determine thirteen of the sixteen first-neighbor frequencies of a DNA to ± 0.02 mole percent. The TG, CA, and TA first-neighbor cannot be unambiguously resolved by our method. The accuracy of the first-neighbor frequency analysis depends on the number of different first-neighbors present in the DNA and the extent to which they differ from the most probable value. The extinction coefficient at 260 nm and the base composition can also be calculated from the CD spectrum.  相似文献   

13.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

14.
Oligodeoxynucleotides containing G and T can bind to homopurine.homopyrimidine sequences on double-stranded DNA by forming C.G x G and T.A x T base triplets. The orientation of the third strand in such triple helices depends on the number of GpT and TpG steps. Therefore a single oligonucleotide can be designed to bind to two consecutive homopurine.homopyrimidine sequences where the two homopurine stretches alternate on the two strands of DNA. The oligonucleotide switches from one homopurine strand to the other at the junction between the two sequences. This result shows that it is possible to extend the range of DNA sequences that can be recognized by a single oligonucleotide.  相似文献   

15.
Sequencing studies have shown that in somatic cells alternating runs of purines and pyrimidines are frequently associated with recombination crossover points. To test whether such sequences actually promote recombination, we have examined the effects of poly[d(pGpT).d(pApC)] and poly[d(pCpG).d(pCpG)] repeats on a homologous recombination event. The parental molecule used in this study, pSVLD, is capable of generating wild-type simian virus 40 DNA via recombination across two 751-base-pair regions of homology and has been described previously (Miller et al., Proc. Natl. Acad. Sci. USA 81:7534-7538, 1984). Single inserts of either a poly[d(pGpT).d(pApC)] repeat or a poly[d(pCpG).d(pCpG)] repeat were positioned adjacent to one region of homology in such a way that the recombination product, wild-type simian virus 40 DNA, could be formed only by recombination within the homologies and not by recombination across the alternating purine-pyrimidine repeats. We have found that upon transfection of test DNAs into simian cells, a poly[d(pCpG).d(pCpG)] repeat enhanced homologous recombination 10- to 15-fold, whereas a poly[d(pGpT).d(pApC)] repeat had less effect. These results are discussed in terms of the features of these repeats that might be responsible for promoting homologous recombination.  相似文献   

16.
P Rajagopal  J Feigon 《Biochemistry》1989,28(19):7859-7870
The complexes formed by the homopurine and homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4 have been investigated by one- and two-dimensional 1H NMR. Under appropriate conditions [low pH, excess d(TC)4 strand] the oligonucleotides form a triplex containing one d(GA)4 and two d(TC)4 strands. The homopurine and one of the homopyrimidine strands are Watson-Crick base paired, and the second homopyrimidine strand is Hoogsteen base paired in the major groove to the d(GA)4 strand. Hoogsteen base pairing in GC base pairs requires hemiprotonation of C; we report direct observation of the C+ imino proton in these base pairs. Both homopyrimidine strands have C3'-endo sugar conformations, but the purine strand does not. The major triplex formed appears to have four TAT and three CGC+ triplets formed by binding of the second d(TC)4 strand parallel to the d(GA)4 strand with a 3' dangling end. In addition to the triplexes formed, at least one other heterocomplex is observed under some conditions.  相似文献   

17.
Binding of simple homopolymeric sequences to Drosophila melanogaster nuclear proteins has been studied. Proteins with Mr 65-72 kDa have been found, which specifically bind to synthetic poly[d(T-G)].poly[d(C-A)], as well as to D. melanogaster DNA containing a block of poly[d(T-G)].poly[d(C-A) 40 b.p. in length. It has been shown, that these proteins bind only to poly[d(T-G).poly[d(C-A)] and not to other types of simple sequences, for example poly[d(G-A)].poly[d(T-C)] and poly[d(A-T)].  相似文献   

18.
H T Steely  Jr  D M Gray    R L Ratliff 《Nucleic acids research》1986,14(24):10071-10090
CD spectra and difference-CD spectra of (a) two DNA X RNA hybrid duplexes (poly[r(A) X d(U)] and poly[r(A) X d(T)]) and (b) three hybrid triplexes (poly-[d(T) X r(A) X d(T)], poly[r(U) X d(A) X r(U)], and poly[r(T) X d(A) X r(T)]) were obtained and compared with CD spectra of six A X U- and A X T-containing duplex and triplex RNAs and DNAs. We found that the CD spectra of the homopolymer duplexes above 260 nm were correlated with the type of base pair present (A-U or A-T) and could be interpreted as the sum of the CD contributions of the single strands plus a contribution due to base pairing. The spectra of the duplexes below 235 nm were related to the polypurine strands present (poly-[r(A)] or poly[d(A)]). We interpret the CD intensity in the intermediate 255-235 nm region of these spectra to be mainly due to stacking of the constituent polypurine strands. Three of the five hybrids (poly[r(A) X d(U)], poly[r(A) X d(T)], and poly[d(T) X r(A) X d(T)]) were found to have heteronomous conformations, while poly[r(U) X d(A) X r(U)] was found to be the most A-like and poly[r(T) X d(A) X r(T)], the least A-like.  相似文献   

19.
R M Wartell  J T Harrell 《Biochemistry》1986,25(9):2664-2671
Raman spectra were obtained from four bacterial DNAs varying in GC content and four periodic DNA polymers in 0.1 M NaCl at 25 degrees C. A curve fitting procedure was employed to quantify and compare Raman band characteristics (peak location, height, and width) from 400 to 1600 cm-1. This procedure enabled us to determine the minimum number of Raman bands in regions with overlapping peaks. Quantitative comparison of the Raman bands of the eight DNAs provided several new results. All of the DNAs examined required bands near 809 (+/- 7) and 835 (+/- 5) cm-1 to accurately reproduce the experimental spectra. Since bands at these frequencies are associated with A-family and B-family conformations, respectively, this result indicates that all DNAs in solution have a mixture of conformations on the time scale of the Raman scattering process. Band characteristics in the 800-850-cm-1 region exhibited some dependence on CG content and base pair sequence. As previously noted by Thomas and Peticolas [Thomas, G. A., & Peticolas, W. L. (1983) J. Am. Chem. Soc. 105, 993], the poly[d(A)].poly[d(T)] spectra were qualitatively distinct in this region. The A-family band is clearly observed at 816 cm-1. The intensity of this band and that of the B-family band at 841 cm-1 were similar, however, to intensities in the natural DNA spectra. Three bands at 811, 823, and 841 cm-1 were required to reproduce the 800-850-cm-1 region of the poly[d(A-T)].poly[d(A-T)] spectra. This may indicate the presence of three backbone conformations in this DNA polymer. Analysis of intensity vs. GC content for 42 Raman bands confirmed previous assignments of base and backbone vibrations and provided additional information on a number of bands.  相似文献   

20.
Synthetic RNA poly[r(A-T)] has been synthesized and its CD spectral properties compared to those of poly[r(A-U)], poly[d(A-T)], and poly[d(A-U)] in various salt and ethanolic solutions. The CD spectra of poly[r(A-T)] in an aqueous buffer and of poly[d(A-T)] in 70.8% v/v ethanol are very similar, suggesting that they both adopt the same A conformation. On the other hand, the CD spectra of poly[r(A-T)] and of poly[r(A-U)] differ in aqueous, and even more so in ethanolic, solutions. We have recently observed a two-state salt-induced isomerization of poly[r(A-U)] into chiral condensates, perhaps of Z-RNA [M. Vorlícková, J. Kypr, and T. M. Jovin, (1988) Biopolymers 27, 351-354]. It is shown here that poly[r(A-T)] does not undergo this isomerization. Both the changes in secondary structure and tendency to aggregation are different for poly[r(A-T)] and poly[r(A-U)] in aqueous salt solutions. In most cases, the CD spectrum of poly[r(A-U)] shows little modification of its CD spectrum unless the polymer denatures or aggregates, whereas poly[r(A-T)] displays noncooperative alterations in its CD spectrum and a reduced tendency to aggregation. At high NaCl concentrations, poly[r(A-T)] and poly[r(A-U)] condense into psi(-) and psi(+) structures, respectively, indicating that the type of aggregation is dictated by the polynucleotide chemical structure and the corresponding differences in conformational properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号