首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
果糖修饰壳聚糖微载体的制备及其原代大鼠肝细胞培养   总被引:4,自引:0,他引:4  
利用果糖修饰的壳聚糖为材料,液体石蜡作分散介质,戊二醛作交联剂,通过反相悬浮法制备了性能优良的微米级果糖修饰壳聚糖微载体。用其进行原代大鼠肝细胞培养,利用相差显微镜和扫描电镜对细胞形态进行观察,并测定了细胞的代谢活性。结果显示果糖修饰的壳聚糖微载体是一种优良的肝细胞培养支架。  相似文献   

2.
The goal of this study was to investigate the viability and synthetic function of rat hepatocytes cocultured with 3T3-J2 fibroblasts in a small-scale microchannel flat-plate bioreactor with and without an internal membrane oxygenator under flow. Bioreactor channel heights ranged between 85 and 500 microm and medium flow rates ranged between 0.06 and 4.18 mL/min. The results showed that the bioreactor without the oxygenator resulted in significantly decreased viability and function of hepatocytes, whereas hepatocytes in the bioreactor with internal membrane oxygenator were able to maintain their viability and function. The shear stress calculations showed that, at lower wall shear stresses (0.01 to 0.33 dyn/cm(2)), hepatocyte functions, measured as albumin and urea synthesis rates, were as much as 2.6- and 1.9-fold greater, respectively, than those at higher wall shear stresses (5 to 21 dyn/cm(2)). Stable albumin and urea synthesis rates for 10 days of perfusion were also demonstrated in the bioreactor with internal membrane oxygenator. These results are relevant in the design of hepatocyte bioreactors and the eventual scaling-up to clinical devices.  相似文献   

3.
Hepatocyte spheroids and hepatocyte were immobilized in chitosan/alginate capsules formed by the electrostatic interactions between chitosan and alginate. After encapsulation, there was a 10% decrease in the viability of spheroids due to the exposure of the cells to a pH 6 during the encapsulation process. However, the encapsulated hepatocyte spheroids maintained over 50% viability and liver specific functions for 2 weeks while the encapsulated hepatocytes, free hepatocytes and free hepatocyte spheroids showed low viability and liver specific functions. Therefore, encapsulated hepatocyte spheroid might be applied to the development of a bioartificial liver.  相似文献   

4.
Chitosan/gelatin composite microcarrier for hepatocyte culture   总被引:2,自引:0,他引:2  
Li K  Wang Y  Miao Z  Xu D  Tang Y  Feng M 《Biotechnology letters》2004,26(11):879-883
Solid and porous chitosan/gelatin (CG) composite microcarriers were prepared by a water-in-oil emulsion process with additional freezing and lyophilization. Adult rat hepatocytes (10(6) cells ml(-1)) attached on CG microcarriers maintained at least 15 d of viability and differentiated functions. Over 15 d, unimmobilized hepatocytes released 1.34-fold less lactate dehydrogenase (LDH), and retained 1.63-, 1.51- and 1.28-fold higher albumin secretion, urea synthesis and 7-ethoxycoumarin deethylation activities, respectively, than those on collagen-coated microcarriers. The CG matrix is therefore a promising microcarrier for hepatocyte culture.  相似文献   

5.
Porous scaffolds of alginate/galactosylated chitosan (ALG/GC) sponges were prepared by lyophilization for liver-tissue engineering. Primary hepatocytes in ALG/GC sponges showed higher cell attachment and viability than in alginate alone owing to the specific interaction of the asialoglycoprotein receptors on hepatocyte with the galactose residues on ALG/GC sponges. Improvements in spheroid formation and long-term liver-specific functions of the immobilized hepatocyte were also observed in ALG/GC sponge.  相似文献   

6.
Development of a bioartificial liver employing xenogeneic hepatocytes   总被引:4,自引:0,他引:4  
Liver failure is a major cause of mortality. A bioartificial liver (BAL) employing isolated hepatocytes can potentially provide temporary support for liver failure patients. We have developed a bioartificial liver by entrapping hepatocytes in collagen loaded in the luminal side of a hollow fiber bioreactor. In the first phase of development, liver-specific metabolic activities of biosynthesis, biotransformation and conjugation were demonstrated. Subsequently anhepatic rabbits were used to show that rat hepatocytes continued to function after the BAL was linked to the test animal. For scale-up studies, a canine liver failure model was developed using D-galactosamine overdose. In order to secure a sufficient number of hepatocytes for large animal treatment, a collagenase perfusion protocol was established for harvesting porcine hepatocytes at high yield and viability. An instrumented bioreactor system, which included dissolved oxygen measurement, pH control, flow rate control, an oxygenator and two hollow fiber bioreactors in series, was used for these studies. An improved survival of dogs treated with the BAL was shown over the controls. In anticipated clinical applications, it is desirable to have the liver-specific activities in the BAL as high as possible. To that end, the possibility of employing hepatocyte spheroids was explored. These self-assembled spheroids formed from monolayer culture exhibited higher liver-specific functions and remained viable longer than hepatocytes in a monolayer. To ease the surface requirement for large-scale preparation of hepatocyte spheroids, we succeeded in inducing spheroid formation in stirred tank bioreactors for both rat and porcine hepatocytes. These spheroids formed in stirred tanks were shown to be morphologically and functionally indistinguishable from those formed from a monolayer. Collagen entrapment of these spheroids resulted in sustaining their liver-specific functions at higher levels even longer than those of spheroids maintained in suspension. For use in the BAL, a mixture of spheroids and dispersed hepatocytes was used to ensure a proper degree of collagen gel contraction. This mixture of spheroids and dispersed cells entrapped in the BAL was shown to sustain the high level of liver-specific functions. The possibility of employing such a BAL for improved clinical performance warrants further investigations.  相似文献   

7.
As nitric oxide is considered a mediator of liver oxidative metabolism during sepsis, we studied the effects of exogenous nitric oxide, produced by NO-donor, (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), on cell viability, urea biosynthesis and oxygen consumption in rat hepatocyte cultures. Nitric oxide release from NOR-3 was studied using 4,5-diaminofluorescein diacetate. Urea levels were measured by the spectrophotometric method. Cell viability was determined by the MTT test and trypan blue exclusion test, whereas oxygen consumption was measured by a polarographic technique. After 2 h treatment, NOR-3 induced an increase in the levels of nitric oxide. After 2 h of treatment and 24 h after the end of the treatment with NOR-3, both cell viability and urea synthesis were significantly reduced in comparison to the controls for NOR-3 concentrations equal to or greater than 50 microM. A reduction in oxygen consumption was observed in hepatocytes after 40 min treatment with 100 microM NOR-3, even if the cell viability was unchanged. Reduction of oxygen consumption is an early indicator of the metabolic alterations in hepatocytes exposed to nitric oxide. These findings suggest that nitric oxide accumulation acts on hepatocyte cultures inducing cell death and reduction of urea synthesis after 2 hours.  相似文献   

8.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   

9.
A hybrid bioartificial liver device supporting a large mass of cells expressing differentiated hepatocyte metabolic capabilities is necessary for the successful treatment of fulminant hepatic failure. The three-compartment gel-entrapment porcine hepatocyte bioartificial liver was designed to provide "bridge" support to transplantation or until native liver recovery is achieved for patients with acute liver failure. The device is an automated mammalian cell culture system supporting 6-7 × 109 porcine hepatocytes entrapped in a collagen matrix and inoculated into the capillary lumen spaces of two 100 kDa molecular mass cut-off hollow fiber bioreactors. Gel contraction recreates a small lumen space within the hollow fiber which allows for the delivery of a nutrient medium. This configuration supported hepatocyte viability and differentiated phenotype as measured by albumin synthesis, ureagenesis, oxygen consumption, and vital dye staining during both cell culture and ex vivo application. The hollow fiber membrane was also shown to isolate the cells from xenogenic immunoglobulin attack. The gel-entrapment bioartificial liver maintained a large mass of functional hepatocytes by providing a three-dimensional cell culture matrix, by delivering basal nutrients through lumen media perfusion, and by preventing rejection of the xenocytes. These features make this device a favorable candidate for the treatment of clinical fulminant hepatic failure.  相似文献   

10.
Fibrin matrix, a naturally derived biodegradable polymer matrix, was evaluated as a scaffold for hepatocyte transplantation in an athymic mouse model. One week after transplantation, opaque conglomerates of the transplanted hepatocytes and fibrin matrix were found on the intestinal mesentery, whereas no transplanted hepatocytes were observed in control groups (transplantation of hepatocytes suspended in culture medium). The hepatocytes in the conglomerates retained hepatocyte-specific functions, as examined with histochemical and immunohistochemical stainings. Stable hepatocyte engraftment may thus be achieved by hepatocyte transplantation using fibrin matrix.  相似文献   

11.
12.
Feedback inhibition of bile acid synthesis in cultured pig hepatocytes   总被引:1,自引:0,他引:1  
Bile acid synthesis by cultured pig hepatocytes, as measured by conversion of [14C]cholesterol to bile acids, increased during the second and third day of culture. This rise was inhibited after addition of various conjugated and unconjugated bile acids in a concentration of 100 microM. It could be completely prevented by cycloheximide, indicating that de novo protein synthesis is required for the increase in bile acid formation. No effect of exogenous bile salts on LDH release to the medium or on cellular ATP content was observed, demonstrating that hepatocyte viability was not affected. During the period in which bile acid synthesis was inhibited, pig hepatocytes were able to accumulate taurocholic acid (100 microM) up to 7-18 nmol per mg cell protein (decreasing during culture time). It is concluded that feedback regulation of bile acid synthesis is exerted by direct action of bile acids on the hepatocyte.  相似文献   

13.
Gene therapy has attracted attention as a potentially effective alternative to liver transplantation for the treatment of hepatic failure. We chose the C/EBPbeta gene, which plays vital roles in liver regeneration, as a candidate for gene therapy, and examined its effect on hepatocyte survival and the suppression of liver inflammation. C/EBPbeta gene overexpression significantly maintained hepatocyte viability during 12 days of the culture. Urea synthesis ability, which is a liver-specific function, in Adv-C/EBPbeta-infected hepatocytes was stably maintained during the culture, but the activity per cell was significantly lower than that in non-infected cells. On the contrary, DNA synthesis activity in Adv-C/EBPbeta-infected hepatocytes was significantly higher than that in non-infected cells. COX-2 was induced in Adv-C/EBPbeta-infected hepatocytes, and the addition of NS398, a specific inhibitor of COX-2, suppressed the viability-maintenance effect. COX-2 was thus shown to be involved in the survival effect of C/EBPbeta gene. The introduction of the C/EBPbeta gene into liver-damaged mice significantly suppressed the serum AST and ALT activities. These results indicate that C/EBPbeta appears to be a survival factor under stressful conditions, and the introduction of the gene has therapeutic function against liver injury.  相似文献   

14.
Primary monolyer cultures of adult rat hepatocytes can be induced to undergo DNA synthesis in serum-free medium in the presence of insulin, glucagon, and epidermal growth factor (three factors). We have found that hepatocyte DNA synthesis is affected not only by an endogenous stimulant produced by the hepatocytes and released into the culture medium. Serum has a strong inhibitory effect on hepatocyte DNA synthesis. Partially purified human platelet extract (“platelet inhibitor”) inhibits the three-factor-induced DNA synthesis in a concenration-dependent manner. Pure βTGF at 0.5 ng/ml as well as HPLC-purified PDGF at 10 ng/ml completely inhibit the three-factor-induced DNA synthesis. Determination of the time required for the presence of the three factors and the platelet inhibitor to exert their effects indicated that the inhibition of DNA synthesis is caused not by competition of the platelet inhibitor with any of the three factors but through an independent pathway. Hepatocyte DNA synthesis is density-dependent and is greater if medium is not changed during the course of an experiment than if medium is changed daily. Hepatocyte-conditioned medium is also affective in stimulating DNA synthesis beyond the level induced by the three factors. These results suggest that an endogenous stimulant for hepatocyte DNA synthesis is produced by the hepatocytes themselves. Our studies demonstrate that hepatocyte DNA synthesis is subject to both stimulatory and inhibitory controls. Unlike the three factors, the endogenous stimulant can overcome the inhibition by the platelet inhibitor, suggesting the importance of these factors in the physiological control of hepatocyte DNA synthesis.  相似文献   

15.
Summary Hepatocytes were isolated from human fetal liver in order to analyze the direct effects of growth factors and hormones on human hepatocyte proliferation and function. Mechanical fragmentation and then dissociation of fetal liver tissue with a collagenase/dispase mixture resulted in high yield and viability of hepatocytes. Hepatocytes were selected in arginine-free, ornithine-supplemented medium and defined by morphology, albumin production and ornithine uptake into cellular protein. A screen of over twenty growth factors, hormones, mitogenic agents and crude organ and cell extracts for effect on the stimulation of hepatocyte growth revealed that EGF, insulin, dexamethasone, and factors concentrated in bovine neural extract and hepatoma cell-conditioned medium supported attachment, maintenance and growth of hepatocytes on a collagen-coated substratum. The population of cells selected and defined as differentiated hepatocytes had a proliferative potential of about 4 cumulative population doublings. EGF and insulin synergistically stimulated DNA synthesis in the absence of other hormones and growth factors. Although neural extracts enhanced hepatocyte number, no effect on DNA synthesis of neural extracts or purified heparin-binding growth factors from neural extracts could be demonstrated in the absence or presence of defined hormones, hepatoma-conditioned medium or serum. Hepatoma cell-conditioned medium had the largest impact on both hepatocyte cell number and DNA synthesis under all conditions. Dialyzed serum protein (1 mg/ml) at 10 times higher protein concentration had a similar effect to hepatoma cell-conditioned medium (100 μg/ml). The results suggest that hepatoma cell conditioned medium may be a concentrated and less complicated source than serum for purification and characterization of additional normal hepatocyte growth factors. This work was supported by NIH grant DK35310. Editor’s statement Many investigators have struggled with the special problems associated with culture of differentiated hepatocytes. In this paper attention is given to the specific growth factor requirements for fetal human hepatocytes. The observation that factors from hepatoma conditioned medium or neural extracts enhanced the growth of the cells may indicate that additional growth factors are to be identified that are important in the survival and proliferation of hepatocytes, and may also indicate that the malignant transformation of these cells may involve the production of autocrine growth stimulators.  相似文献   

16.
MethodsHuman hepatocyte microbeads (HMBs) were prepared using sterile GMP grade materials. We determined physical stability, cell viability, and hepatocyte metabolic function of HMBs using different polymerisation times and cell densities. The immune activation of peripheral blood mononuclear cells (PBMCs) after co-culture with HMBs was studied. Rats with ALF induced by galactosamine were transplanted intraperitoneally with rat hepatocyte microbeads (RMBs) produced using a similar optimised protocol. Survival rate and biochemical profiles were determined. Retrieved microbeads were evaluated for morphology and functionality.ResultsThe optimised HMBs were of uniform size (583.5±3.3 µm) and mechanically stable using 15 min polymerisation time compared to 10 min and 20 min (p<0.001). 3D confocal microscopy images demonstrated that hepatocytes with similar cell viability were evenly distributed within HMBs. Cell density of 3.5×106 cells/ml provided the highest viability. HMBs incubated in human ascitic fluid showed better cell viability and function than controls. There was no significant activation of PBMCs co-cultured with empty or hepatocyte microbeads, compared to PBMCs alone. Intraperitoneal transplantation of RMBs was safe and significantly improved the severity of liver damage compared to control groups (empty microbeads and medium alone; p<0.01). Retrieved RMBs were intact and free of immune cell adherence and contained viable hepatocytes with preserved function.ConclusionAn optimised protocol to produce GMP grade alginate-encapsulated human hepatocytes has been established. Transplantation of microbeads provided effective metabolic function in ALF. These high quality HMBs should be suitable for use in clinical transplantation.  相似文献   

17.
Rat hepatocytes were cultured initially as spheroids on culture plates and then transferred into a rotating wall vessel (high-aspect ratio vessel [HARV]) for further culturing. Morphological evaluation based on electron microscopy showed that hepatocyte spheroids cultured for 30 d in the HARV had a compact structure with tight cell-cell junctions, numerous smooth and rough endoplasmic reticulum, intact mitochondria, and bile canaliculi lined with microvilli. The viability and differentiated properties of the hepatocytes cultured in the HARV were further substantiated by the presence of both phase I oxidation and phase II conjugation drug-metabolizing enzyme activities, as well as albumin synthesis. Homogenates prepared from freshly isolated hepatocytes and hepatocytes cultured in the HARV showed similar cytochrome P450 2B activities measured as pentoxyresorufin-O-dealkylase and testosterone 16beta-hydroxylase. Further, intact hepatocytes cultured in the HARV were found to metabolize chlorzoxazone to 6-hydroxychlorzoxazone; dextromethorphan to dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan; midazolam to 1-hydroxymidazolam and 4-hydroxymidazolam; and 7-hydroxycoumarin to its glucuronide and sulfate conjugates. In conclusion, we found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term (1 mo) maintenance of viability and cellular function.  相似文献   

18.
Studies have shown linoleate could not only promote cell viability but also affect lipid metabolism in mammals. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effect of linoleate on the lipid metabolic homeostasis pathway was determined. We measured the mRNA levels of genes involved in triglyceride synthesis, lipid deposition, β-oxidation, and assembly and secretion of VLDL-TGs in goose (Anser cygnoides) primary hepatocytes. Linoleate significantly increased goose hepatocyte viability, and linoleate at 0.125 mM, 0.25 mM, 0.5 mM and 1.0 mM all showed a significant effect on TG accumulation. However, with increasing linoleate concentrations, the extracellular TG concentration and extracellular VLDL gradually decreased. DGAT1, DGAT2, PPARα, PPARγ, FoxO1, MTP, PLIN and CPT-1 mRNA was detected by real-time PCR. With increasing linoleate concentrations, the changes in DGAT1, DGAT2, PPARα and CPT-1 gene expression, which regulates hepatic TG synthesis and fatty acid oxidation, first increased and then decreased. Additionally, FoxO1 and MTP gene expression was reduced with increasing linoleate concentrations, and the change in PLIN gene expression was increased at all concentrations, similar to the regulation of intracellular TG accumulation. In conclusion, linoleate regulated TG accumulation and increased hepatocyte viability. The data suggest that linoleate does promote goose hepatocyte viability and steatosis, which may up-regulate TG synthesis-relevant gene expression, suppress assembly and secretion of VLDL-TGs, and increase fatty acid oxidation properly to function of goose primary hepatocytes.  相似文献   

19.
Rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing either fetal bovine serum (FBS), glycerol, dimethyl sulfoxide (DMSO), sucrose or a mixture of these as a cryoprotectant. The best survival was with 10% (v/v) DMSO containing 30% (v/v) FBS using 5 x 10(5) hepatocytes ml(-1) at -70 degrees C for 5 d on type I collagen-coated dishes. After thawing, the cell viability was 81% determined by the MTT-test. The cryopreserved hepatocytes had the capacity of albumin synthesis similar to hepatocytes without cryopreservation. This result shows that cryopreservation of rat hepatocyte can be used for the evaluation of hepatic functions.  相似文献   

20.
TGFbeta controls hepatocyte growth through cell cycle arrest and apoptosis, and resistance to TGFbeta is a mechanism of malignant transformation. The aim of this study was to assess differences in TGFbeta-mediated growth inhibition in normal and cirrhotic hepatocytes. Cirrhosis was induced in mice and normal and cirrhotic hepatocytes were isolated by collagenase perfusion and treated with or without TGFbeta (5 ng/ml). DNA synthesis, Smad protein expression, and DNA binding activity were determined. TGFbeta reduced DNA synthesis to a greater degree in normal hepatocytes than in cirrhotic hepatocytes (87% vs. 68%; p<0.05). Smad protein expression was decreased in cirrhotic hepatocytes and Smad 2/3/4 complex formation was suppressed. Furthermore, cirrhotic hepatocytes had decreased DNA binding activity at 120 min following TGFbeta treatment. In conclusion, decreased Smad protein expression may impair TGFbeta-mediated growth inhibition in cirrhotic hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号