首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes preference classes and preference Moore machines as a basis for integrating different hybrid neural representations. Preference classes are shown to provide a basic link between neural preferences and fuzzy representations at the preference class level. Preference Moore machines provide a link between recurrent neural networks and symbolic transducers at the preference Moore machine level. We demonstrate how the concepts of preference classes and preference Moore machines can be used to interpret neural network representations and to integrate knowledge from hybrid neural representations. One main contribution of this paper is the introduction and analysis of neural preference Moore machines and their link to a fuzzy interpretation. Furthermore, we illustrate the interpretation and combination of various neural preference Moore machines with additional real-world examples.  相似文献   

2.
The article presents modeling of daily average ozone level prediction by means of neural networks, support vector regression and methods based on uncertainty. Based on data measured by a monitoring station of the Pardubice micro-region, the Czech Republic, and optimization of the number of parameters by a defined objective function and genetic algorithm a model of daily average ozone level prediction in a certain time has been designed. The designed model has been optimized in light of its input parameters. The goal of prediction by various methods was to compare the results of prediction with the aim of various recommendations to micro-regional public administration management. It is modeling by means of feed-forward perceptron type neural networks, time delay neural networks, radial basis function neural networks, ε-support vector regression, fuzzy inference systems and Takagi–Sugeno intuitionistic fuzzy inference systems. Special attention is paid to the adaptation of the Takagi–Sugeno intuitionistic fuzzy inference system and adaptation of fuzzy logic-based systems using evolutionary algorithms. Based on data obtained, the daily average ozone level prediction in a certain time is characterized by a root mean squared error. The best possible results were obtained by means of an ε-support vector regression with polynomial kernel functions and Takagi–Sugeno intuitionistic fuzzy inference systems with adaptation by means of a Kalman filter.  相似文献   

3.
This paper describes an initial but fundamental attempt to lay some groundwork for a fuzzy-set-based paradigm for sensory analysis and to demonstrate how fuzzy set and neural network techniques may lead to a natural way for sensory data interpretation. Sensory scales are described as fuzzy sets, sensory attributes as fuzzy variables, and sensory responses as sample membership grades. Multi-judge responses are formulated as a fuzzy membership vector or fuzzy histogram of response, which gives an overall panel response free of the unverifiable assumptions implied in conventional approaches. Neural networks are used to provide an effective tool for modeling and analysis of sensory responses in their naturally fuzzy and complex forms. A maximum method of defuzzification is proposed to give a crisp grade of the majority opinion. Two applications in meat quality evaluation are used to demonstrate the use of the paradigm and procedure. It is hoped that this work will bring up some new ideas and generate interest in research on application of fuzzy sets and neural networks in sensory analysis.  相似文献   

4.

Background

Uncertainties exist in many biological systems, which can be classified as random uncertainties and fuzzy uncertainties. The former can usually be dealt with using stochastic methods, while the latter have to be handled with such approaches as fuzzy methods.

Results

In this paper, we focus on a special type of biological systems that can be described using ordinary differential equations or continuous Petri nets (CPNs), but some kinetic parameters are missing or inaccurate. For this, we propose a class of fuzzy continuous Petri nets (FCPNs) by combining CPNs and fuzzy logics. We also present and implement a simulation algorithm for FCPNs, and illustrate our method with the heat shock response system.

Conclusions

This approach can be used to model biological systems where some kinetic parameters are not available or their values vary due to some environmental factors.
  相似文献   

5.
Analytical study of large-scale nonlinear neural circuits is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells’ dynamical equations. Although there is a close relation between the theories of fuzzy logical systems and neural systems and many papers investigate this subject, most investigations focus on finding new functions of neural systems by hybridizing fuzzy logical and neural system. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system by abstracting the fuzzy logical framework of a neural cell. Our analysis enables the educated design of network models for classes of computation. As an example, a recurrent network model of the primary visual cortex has been built and tested using this approach.  相似文献   

6.
Analytical study of large-scale nonlinear neural circuits is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells' dynamical equations. Al- though there is a close relation between the theories of fuzzy logical systems and neural systems and many papers investigate this subject, most investigations focus on finding new functions of neural systems by hybridizing fuzzy logical and neural system. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system by abstracting the fuzzy logical framework of a neural cell. Our analysis enables the educated design of network models for classes of computation. As an example, a recurrent network model of the primary visual cortex has been built and tested using this approach.  相似文献   

7.
Distribution models should take into account the different limiting factors that simultaneously influence species ranges. Species distribution models built with different explanatory variables can be combined into more comprehensive ones, but the resulting models should maximize complementarity and avoid redundancy. Our aim was to compare the different methods available for combining species distribution models. We modelled 19 threatened vertebrate species in mainland Spain, producing models according to three individual explanatory factors: spatial constraints, topography and climate, and human influence. We used five approaches for model combination: Bayesian inference, Akaike weight averaging, stepwise variable selection, updating, and fuzzy logic. We compared the performance of these approaches by assessing different aspects of their classification and discrimination capacity. We demonstrated that different approaches to model combination give rise to disparities in the model outputs. Bayesian integration was systematically affected by an error in the equations that are habitually used in distribution modelling. Akaike weights produced models that were driven by the best single factor and therefore failed at combining the models effectively. The updating and the stepwise approaches shared recalibration as the basic concept for model combination, were very similar in their performance, and showed the highest sensitivity and discrimination capacity. The fuzzy‐logic approach yielded models with the highest classification capacity according to Cohen's kappa. In conclusion: 1) Bayesian integration, employing the currently used equation, and the Akaike weight procedure should be avoided; 2) the updating and stepwise approaches can be considered minor variants of the same recalibrating approach; and 3) there is a trade‐off between this recalibrating approach, which has the highest sensitivity, and fuzzy logic, which has the highest overall classification capacity. Recalibration is better if unfavourable conditions in one environmental factor may be counterbalanced with favourable conditions in a different factor, otherwise fuzzy logic is better.  相似文献   

8.
For decades, the cognitive and neural sciences have benefitted greatly from a separation of mind and brain into distinct functional domains. The tremendous success of this approach notwithstanding, it is self-evident that such a view is incomplete. Goal-directed behaviour of an organism requires the joint functioning of perception, memory and sensorimotor control. A prime candidate for achieving integration across these functional domains are attentional processes. Consequently, this Theme Issue brings together studies of attentional selection from many fields, both experimental and theoretical, that are united in their quest to find overreaching integrative principles of attention between perception, memory and action. In all domains, attention is understood as combination of competition and priority control (‘bias’), with the task as a decisive driving factor to ensure coherent goal-directed behaviour and cognition. Using vision as the predominant model system for attentional selection, many studies of this Theme Issue focus special emphasis on eye movements as a selection process that is both a fundamental action and serves a key function in perception. The Theme Issue spans a wide range of methods, from measuring human behaviour in the real word to recordings of single neurons in the non-human primate brain. We firmly believe that combining such a breadth in approaches is necessary not only for attentional selection, but also to take the next decisive step in all of the cognitive and neural sciences: to understand cognition and behaviour beyond isolated domains.  相似文献   

9.
研究一类具变时滞的模糊BAM神经网络.利用拓扑度论和微分不等式,获得了该类网络平衡点的存在性、唯一性和全局指数稳定性的充分条件.一个例子用来解释本文获得的结果.  相似文献   

10.
Ecological functional zoning is critical for multiobjective sustainable management of social-ecological systems. However, the framework of ecological functional zoning needs to be further improved. In terms of the index system, the existing “element-structure–function” index system mainly considers the structural characteristics that have a negative impact on ecological processes, e.g., disturbances, while ignoring positive impacts, e.g., connectivity, which may weaken the role of key nodes in the ecosystem and is not conducive to regional ecological protection. In terms of research methodology, the widely used self-organizing feature mapping neural network (SOFM) produces a number of clusters that easily exceed expectations, thus increasing management difficulties. Therefore, there is an urgent need to explore new combining methods. Here, an improved index system combining ecological connectivity and ecological functions and a traditional index system including only ecological functions were constructed, and a zoning method combining a self-organizing feature mapping neural network and fuzzy mean clustering (SOFM-FCM) was used for functional zoning of the middle reaches of the Yangtze River urban agglomeration. The advantages of functional zoning incorporating ecological connectivity were verified by comparing the results of both zoning procedures before and after improvement. The results indicate that the study area could be divided into ecological conservation areas, biodiversity conservation areas, urban development areas, and grain production areas. The zoning schemes before and after the improved framework were reliable compared with the national planning scheme, but there was 20.6% inconsistency in the results after the improved framework. This was mainly manifested by the shift from biodiversity conservation areas to ecological conservation areas and from urban development areas to food production areas. This shift was more conducive to improving spatial continuity and landscape multifunctionality, thus maximizing ecological conservation, pushing back smart urban growth, and achieving food security. This study expands the research perspective concerned with ecological functional zoning, and these results can provide an important reference for regional ecological protection and related research.  相似文献   

11.
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.  相似文献   

12.
Biology, chemistry and medicine are faced by tremendous challenges caused by an overwhelming amount of data and the need for rapid interpretation. Computational intelligence (CI) approaches such as artificial neural networks, fuzzy systems and evolutionary computation are being used with increasing frequency to contend with this problem, in light of noise, non-linearity and temporal dynamics in the data. Such methods can be used to develop robust models of processes either on their own or in combination with standard statistical approaches. This is especially true for database mining, where modeling is a key component of scientific understanding. This review provides an introduction to current CI methods, their application to biological problems, and concludes with a commentary about the anticipated impact of these approaches in bioinformatics.  相似文献   

13.
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).  相似文献   

14.
15.
基于径向基函数神经网络的心电图ST段形态识别   总被引:4,自引:0,他引:4  
心电图的ST段是指QRS波的终点至T波的起点间的一个子波,其时间长度与心率有关,对ST段形态的识别有助于分析ST段变化的原因和确定缺血的部位。将模糊逻辑系统与神经网络相结合,利用基于自适应模糊系统的径向基函数神经网络对心电信号ST段的形态识别进行了研究。该网络比BP网络学习进度快,具有增量学习的能力,它能够识别学习外的新模式。研究取得了较好的识别结果。  相似文献   

16.
This paper describes a method for growing a recurrent neural network of fuzzy threshold units for the classification of feature vectors. Fuzzy networks seem natural for performing classification, since classification is concerned with set membership and objects generally belonging to sets of various degrees. A fuzzy unit in the architecture proposed here determines the degree to which the input vector lies in the fuzzy set associated with the fuzzy unit. This is in contrast to perceptrons that determine the correlation between input vector and a weighting vector. The resulting membership value, in the case of the fuzzy unit, is compared with a threshold, which is interpreted as a membership value. Training of a fuzzy unit is based on an algorithm for linear inequalities similar to Ho-Kashyap recording. These fuzzy threshold units are fully connected in a recurrent network. The network grows as it is trained. The advantages of the network and its training method are: (1) Allowing the network to grow to the required size which is generally much smaller than the size of the network which would be obtained otherwise, implying better generalization, smaller storage requirements and fewer calculations during classification; (2) The training time is extremely short; (3) Recurrent networks such as this one are generally readily implemented in hardware; (4) Classification accuracy obtained on several standard data sets is better than that obtained by the majority of other standard methods; and (5) The use of fuzzy logic is very intuitive since class membership is generally fuzzy.  相似文献   

17.
光敏感通道(channelrhodopsin-2,ChR2)是一种受光脉冲控制的具有7次跨膜结构的非选择性阳离子通道蛋白,自1991年从莱茵衣藻中发现后被许多实验室所关注.依据ChR2可以快速形成光电流,使细胞发生去极化反应的电生理特性,ChR2已被广泛应用于神经系统的研究.与传统的神经系统研究方法如电生理技术、神经药理学方法相比,用光脉冲控制带有ChR2的神经元的活动,具有更高的空间选择性和特异性.ChR2作为光基因技术的核心组成部分,对神经科学是一个崭新的应用前景广泛的研究工具.近年来ChR2不仅应用于视觉、躯体感觉、听觉和嗅觉等多条感觉神经回路的形态和功能研究,还被应用于各种临床神经系统疾病的研究.本文总结了目前ChR2在神经系统中的研究进展,并对ChR2未来的应用前景作了进一步展望.  相似文献   

18.
Summary In analysis of oil accumulation by the yeast Rhodotorula gracilis, fuzzy logic and neural networks were shown to be able to significantly reduce the number of experiments required in designing fermentation media. Fuzzy logic performed similarly, although slightly less accurately, than neural networks in predicting the outcome of shake flask experiments. In some instances having too many fuzzy rules decreased the accuracy of the technique, and further work is required to determine the criteria for achieving optimum performance from the fuzzy logic model. Overall fuzzy logic is a viable and useful tool for designing fermentation media.  相似文献   

19.
20.
《Ecological Informatics》2007,2(2):159-166
Rainfall variations in tropical areas like Indonesia are dependent upon the tropical climate variability that has two seasons, the dry and wet seasons. However, the significant variations inherent in tropical climate are frequently affected by the combination of the atmosphere phenomena such as the El Niño-southern oscillation (ENSO) influence and tropical cyclone. This in turn lead to uncertainty of rainfall, making it difficult to develop an analysis technique that adequately assesses and interprets variations in rainfall periodicity. Many previous studies of rainfall variation have used techniques such as artificial neural networks and fuzzy methods. Each method uses a different rationale for the way in which the analysis purposes are preserved during analysis. The current study presents the use of a supervised learning of the neuro-fuzzy classification model in order to assess the rainfall variations in a tropical area. This method is a special example of a model within the field of neuro-fuzzy systems that enables the construction of the model output that could be represented by fuzzy classification rules. The classification procedures were started to derive the cluster information for the datasets by using the fuzzy C-means (FCM) clustering. Here, the process of clustering was arranged to provide two clusters of datasets, by adapting to the rainfall of dry (small rainfall) and wet (large rainfall) seasons over the study areas. Based on the prior clusters from the FCM, a neuro-fuzzy algorithm was trained to develop a set of the rule base of the classification models. The pruning strategies for the given rule base in the trained classifier were then exploited to improve the accuracy of the resulting model. The results of analysis gave strong performance by yielding a simpler rule base with a high accuracy. This enabled improved interpretability of variation in rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号