首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A direct hemolytic activity, dependent on phospholipase A (PLA) activity, was located in the particulate subcellular fraction (P30) of Trichomonas vaginalis. We identified soluble direct and indirect hemolytic activities in the spent medium and soluble fraction (S30) of T. vaginalis strain GT-13. Spent medium showed the highest specific indirect hemolytic activity (SIHA) at pH 6.0 (91 indirect hemolytic units [HU]/mg/hr). Spent medium and P30, but not S30, showed direct hemolytic activity. PLA activity was protein dose dependent and time dependent. The highest PLA activity was observed at pH 6.0. All trichomonad preparations showed phospholipase A1 (PLA A1) and phospholipase A2 (PLA A2) activities. Indirect and direct hemolytic activity and PLA A1 and PLA A2 diminished at pH 6.0 and 8.0 with increasing concentrations of Rosenthal's inhibitor. The greatest effect was observed with 80 microM at pH 6.0 on the SIHA of S30 (83% reduction) and the lowest at pH 8.0, also on the SIHA of S30 (26% reduction). In conclusion, T. vaginalis contains particulate and soluble acidic, and alkaline direct and indirect hemolytic activities, which are partially dependent on alkaline or acidic PLA A1 and PLA A2 enzymes. These could be responsible for the contact-dependent and -independent hemolytic and cytolytic activities of T. vaginalis.  相似文献   

2.
Two phospholipase A(2) (PLA(2)) enzymes (NK-PLA(2)-A and NK-PLA(2)-B) were purified from the venom of the monocled cobra Naja kaouthia. The molecular weights of NK-PLA(2)-A and NK-PLA(2)-B, as estimated by mass spectrometry, were 13,619 and 13,303 Da respectively. Both phospholipases were highly thermostable, had maximum catalytic activity at basic pH, and showed preferential hydrolysis of phosphatidylcholine. Intravenous injection of either PLA(2) up to a dose of 10 mg/kg body weight was non-toxic to mice and did not show neurotoxic symptoms. The N. kaouthia PLA(2)s displayed anticoagulant and cytotoxic activity, but poor hemolytic activity. Both the PLA(2)s were more toxic to Sf9 and Tn cells compared to VERO cells. NK-PLA(2) exhibited selective lysis of wild-type baculovirus-infected Sf9 cells compared to normal cells. Amino acid modification studies and heating experiments suggest that separate sites in the NK-PLA(2) molecules are responsible for their catalytic, anticoagulant and cytotoxic activities.  相似文献   

3.
Piratoxins (PrTX) I and III are phospholipases A2 (PLA2s) or PLA2 homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA2, while PrTX-I is a Lys49 PLA2 homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities.  相似文献   

4.
In the present study, an acidic PLA(2), designated Bl-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000Da and pI was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-α, IL-1β and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA(2) induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism.  相似文献   

5.
Geographic venom samples of Crotalus viridis viridis were obtained from South Dakota, Wyoming, Colorado, Oklahoma, Texas, New Mexico, and Arizona. From these samples, the phospholipases A(2) (PLA(2)s) were purified and their N-terminal sequences, precise masses, and in vitro enzymatic activities were determined. We purified two to four distinct acidic PLA(2)s from each sample; some of them displayed different inhibition specificities toward mammalian platelets. One of the acidic PLA(2)s induced edema, but had no anti-platelet activity. There was also a common basic PLA(2) myotoxin in all the samples. We have cloned five acidic PLA(2)s and several hybrid-like nonexpressing PLA(2)s. Molecular masses and N-terminal sequences of the purified PLA(2)s were matched with those deduced from the cDNA sequences, and the complete amino acid sequences of five novel acidic PLA(2)s were thus solved. They share 78% or greater sequence identity, and a cladogram based on the sequences of many venom acidic PLA(2)s of New World pit vipers revealed at least two subtypes. The results contribute to a better understanding of the ecogenetic adaptation of rattlesnakes and the structure-activity relationships and evolution of the acidic PLA(2)s in pit viper venom.  相似文献   

6.
Callosellasma rhodostoma (Malayan pitviper) is a monotypic Asian pitviper of medical importance. Three acidic phospholipases A2 (PLA2s) and one basic PLA2-homolog were purified from its venom while 10 cDNAs encoding distinct PLA2s were cloned from venom glands of a Thailand specimen of this species. Complete amino-acid sequences of the purified PLA2s were successfully deduced from their cDNA sequences. Among the six un-translated PLA2 cDNAs, two apparently result from recombination of its Lys49-PLA2 gene with its Asp49-PLA2 genes. The acidic PLA2s inhibit platelet-aggregation, while the noncatalytic PLA2-homolog induces local edema. This basic PLA2-homolog contains both Asp49 and other, unusual substitutions unique for the venom Lys49-PLA2 subtype (e.g. Leu5, Trp6, Asn28 and Arg34). Three-dimensional modelling of the basic protein revealed a heparin-binding region, and an abnormal calcium-binding pocket, which may explain its low catalytic activity. Oxidation of up to six of its Met residues or coinjection with heparin reduced its edema-inducing activity but methylation of its active site His48 did not. The distinct Arg/Lys-rich and Met-rich region at positions 10-36 of the PLA2 homolog presumably are involved in its heparin-binding and the cell membrane-interference leading to edema and myotoxicity.  相似文献   

7.
The pharmacological properties of three phospholipases A2 (CM-I, CM-II and CM-III) purified from Naja mossambica mossambica venom were studied. The order of their catalytic and indirect hemolytic potencies was CM-I = CM-II greater than CM-III. Among them, only CM-III had a direct hemolytic action on the guinea-pig RBC, which was greatly inhibited by heparin. In the chick biventer cervicis nerve- muscle preparation, both CM-II and CM-III caused neuromuscular blockade with a gradual contracture and a decreased sensitivity to ACh and KCl, whereas no complete neuromuscular block was observed with CM-I up to 30 micrograms/ml. In the mouse phrenic nerve-diaphragm preparation, these three PLA2s abolished twitches evoked by indirect stimulation earlier than those by direct stimulation. Contracture was also produced by CM-II and CM-III. However only the latter was inhibited by pretreatment with heparin. These PLA2s caused myonecrosis in the hind-leg muscle of the mouse when injected intramuscularly. From these results, it is concluded that all of these PLA2s are both neurotoxic and myotoxic.  相似文献   

8.
Lonomia obliqua caterpillar bristle extract induces both direct and indirect hemolytic activity on human and rat washed erythrocytes, and provokes intravascular hemolysis in Wistar rats. Indirect hemolytic activity is assumed to be caused by a phospholipase A(2) (PLA(2)) present in this extract, and this investigation was initiated in order to characterize this enzyme. Phospholipase A(2) activity of crude extract was inhibited by both a PLA(2)-specific inhibitor (pBpb) and the metal ion chelator EDTA. L. obliqua PLA(2) was purified by liquid chromatography from the crude bristle extract and had a molecular mass of 15kDa and a pI of 5.9; its N-terminal sequence showed high homology to a sequence of a putative PLA(2) obtained from a cDNA library of L. obliqua bristles, and it is tentatively placed among Group III phospholipases A(2). This enzyme was stable at 4 degrees C, sensitive to higher temperatures, and its maximum catalytic activity was at pH 8.0. L. obliqua PLA(2) induced hemolysis only when incubated with exogenous lecithin. Thus, the PLA(2) purified herein appears to be responsible for the indirect hemolytic activity of the crude bristle extract.  相似文献   

9.
Five highly toxic phospholipases A2 (PLAs) (beta-bungarotoxin, caudoxin, Mojave toxin, notexin and a basic PLA from Naja nigricollis venom) were compared for their pharmacological actions. In the chick biventer cervicis nerve-muscle preparation, all PLA toxins except beta-bungarotoxin (beta-BuTX) inhibited the postsynaptic acetylcholine response and induced contracture of the muscle at a high concentration. Indirect hemolytic activity was found in all PLA toxins and some of the toxins (Naja nigricollis basic PLA and Mojave toxin) even showed a potent direct hemolytic action, while beta-BuTX was devoid of both direct and indirect hemolytic activities on the guinea-pig erythrocytes. All PLA toxins except beta-BuTX caused an increase in muscle tone in the guinea-pig ileum at a concentration as low as 0.05 microgram/ml, and an increase in the contractile force in the guinea-pig atrium at a concentration of 1.0 microgram/ml. In contrast, beta-BuTX had no stimulant effect at concentrations up to 10 micrograms/ml. On the cultured cells, beta-BuTX suppressed the proliferation of neuroblastoma cells, but did not cause lysis of non-neuronal cells of the rat brain. However, beta-BuTX uniquely maintained a high population of viable cells in the neuroblastoma cell cultures. From these results it was concluded that beta-BuTX is the most specific presynaptic neurotoxin among the PLA toxins so far tested.  相似文献   

10.
Trichomonad total extracts (TTE), or vesicular (P30) and soluble (530) subcellular fractions from 3 pathogenic Trichomonas vaginalis strains (GT-3. GT-13. and GT-15), lysed both human and Sprague-Dawley rat erythrocytes in a time- and dose-dependent manner. The entire hemolytic activity of TTE was located in P30, showing 2 peaks of maximum activity, one at pH 6.0 and another at pH 8.0. in the presence of 1 mM Ca2+. Hemolytic activity on rat erythrocytes was greater at pH 6.0 16.71 +/- 0.33 hemolytic units IHU]/mg/hr to 11.60 +/- 0.24 HU/mg/hr) than at pH 8.0 (3.81 +/- 0.30 HU/mg/hr to 5.75 +/- 0.65 HU/mg/hr). and it was greater than that on human red blood cells at pH 6.0 (2.67 +/- 0.19 HU/mg/hr to 4.08 +/- 0.15 HU/mg/hr) or pH 8.0 (2.24 +/- 0.0 9 HU/mg/hr to 2.81 +/- 0.06 HU/mg/hr). The alkaline and acidic hemolytic activity diminished (60-93% at pH 6.0 and 78-93% at pH 8.0) by the effect of 80 microM Rosenthal's inhibitor, which also inhibited 27-45% and 29-54% trichomonad alkaline and acidic phospholipase A activities, respectively. Vesicles, vacuoles, and hydrogenosomes were rich in P30. Trichomonas vaginalis has a hemolytic PLA, which could be involved in its cytopathogenic mechanism.  相似文献   

11.
Phospholipase A2 (PLA2) is a key component of the inflammatory process because of its role in the generation of eicosanoids and platelet-activating factor (PAF). Manipulation of PLA2 activity offers a novel therapeutic approach for the development of antiinflammatory agents; however, there is a need for a suitable in vivo model. Injection of 1 microgram of snake venom PLA2 (A. piscivorus piscivorus, D-49) into the mouse hind footpad produced a significant three- to four-fold rise in paw edema within 10 min, compared to the saline control. Edema formation depended on enzyme concentration and appeared specific for PLA2 since edema was negated by enzyme pretreatment with p-bromophenacyl bromide, a nonspecific PLA2 inhibitor. Moreover, injection of a protein such as bovine serum albumin did not result in significant edema. Coinjection of phenidone (lipoxygenase inhibitor, 50 micrograms), indomethacin (cyclooxygenase inhibitor, 50 micrograms), cyproheptadine (antihistamine/antiserotonin, 50 micrograms), aristolochic acid (putative PLA2 inhibitor, 100 micrograms), or kadsurenone (PAF antagonist, 50 micrograms) with PLA2 (1 microgram/paw) resulted in partial reduction (44.5, 34.2, 54.7, 64, and 50% inhibition, respectively) of edema formation. Oral administration of cyproheptadine (10 mg/kg), indomethacin (10 mg/kg), BW 755c (100 mg/kg), or dexamethasone (1 mg/kg) 1-3 h before challenge also decreased PLA2-induced edema (63.0, 30.1, 47.8, or 62.5% inhibition, respectively). The data suggest that mouse paw edema resulting from PLA2 injection is a multicomponent event, influenced by both autacoids and lipid mediators of inflammation.  相似文献   

12.
In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III--AY145836) is related to an acidic PLA2 sharing similarity, within the range 55-81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.  相似文献   

13.
Myonecrosis, in addition to edema and other biological manifestations, are conspicuous effects of Bothrops snake venoms, some of them caused by phospholipases A(2) (PLA(2)s). Asp49-PLA(2)s are catalytically active, whereas Lys49-PLA(2)s, although highly toxic, have little or no enzymatic activity upon artificial substrates, due to a substitution of lysine for aspartic acid at position 49. Crotapotin (CA), the acidic counterpart of crotoxin PLA(2) (CB), is a PLA(2)-like protein from Crotalus durissus terrificus snake venom, and is considered a chaperone protein for CB, able to increase its lethality about ten fold, but to inhibit the formation of the rat paw edema induced by carrageenin and by snake venoms. In this study, we demonstrate that CA significantly inhibits the edema induced by BthTX-I (23% inhibition), BthTX-II (27%), PrTX-I (25%), PrTX-III (35%) and MjTX-II (10%) on the mouse paw. CK levels evoked by isolated Asp49 or Lys49-PLA(2)s were reduced by 40% to 54% in the presence of CA and, in all cases, the membrane damaging activity of the toxins was also reduced. Circular dichroism spectra of the PLA(2)s in the presence and absence of CA showed that there was not any detectable secondary structural modification due to association between CA and the myotoxins. However, Fourier Transformed Infrared (FT-IR) analysis indicated that ionic and hydrophobic contacts contributed to stabilize this interaction.  相似文献   

14.
磷脂酶A2在内毒素致大鼠肺损伤中的作用   总被引:3,自引:0,他引:3  
大鼠静脉注射大肠杆茵内毒素(30mg/kg)后3h肺血管外水量和支气管肺泡灌洗液中蛋白浓度明显增加,表明发生了通透性肺水肿;同时血清和支气管肺泡灌洗液中磷脂酶A2(PLA2)活性升高,且PLA,活性的升高与肺血管外水量的增加呈显著正相关。预先给予PLA2抑制剂对溴苯酰基溴可抑制内毒素引起的PLA2活性升高和通透性肺水肿。提示PLA2介导了内毒素引起的肺损伤。  相似文献   

15.
We examined the effect of phospholipase A2 (PLA2; Naja naja) challenge on pulmonary hemodynamics, airway constriction, and fluid filtration in isolated Ringer-perfused guinea pig lungs. Intratracheal PLA2 (10-100 U) produced dose-dependent increases in pulmonary arterial pressure, intratracheal pressure, and lung weight, although intravenous PLA2 administration had no effect on monitored variables. Morphological features indicative of airway constriction and pulmonary edema were observed by light microscopy. PLA2-induced increases in intratracheal pressure and/or lung weight were attenuated to varying degrees by pretreatment with indomethacin (1 microM, a cyclooxygenase inhibitor), ICI-198,615 (1 microM, a leukotriene D4 receptor antagonist), and WEB 2086 (1 microM, a platelet-activating factor antagonist). PLA2-induced increases in pulmonary arterial pressure and intratracheal pressure were also reduced in lungs removed from animals pretreated with dexamethasone (50 mg/kg ip for 2 days; a steroidal antiinflammatory agent). Pyrilamine (1 microM, a histamine1-receptor antagonist) and Takeda AA861 (1 microM, a delta 5-lipoxygenase inhibitor) did not produce significant inhibitory effects on PLA2-induced pathophysiological changes. Intratracheal instillation of high-dose platelet-activating factor (50 micrograms) or lysophosphatidylcholine (100 micrograms) produced gradual increases in intratracheal pressure and lung weight, but these changes were not as large as those induced by PLA2. Thus these studies suggest that resident cell populations associated with airways may play an important role in PLA2-induced pathophysiological changes in the perfused guinea pig lung. These PLA2-induced effects are most likely partially mediated by generation of eicosanoids and platelet-activating factor.  相似文献   

16.
Vipera russellii venom was separated into thirteen fractions by means of DEAE-Sephadex A-50 column chromatography. Fraction III possessed anticoagulant and phospholipase A activities and Fraction XI possessed procoagulant and caseinolytic activities, both were further purified by gel filtration on Sephacryl S-200 column. Purified procoagulant (Component II) was a two-chain protein with molecular weight of 86 000 consisting of A-chain (Mr 66 000) and B-chain (Mr 20 000). It was a glycoprotein containing 7.8% neutral sugar and 715 amino-acid residues. The procoagulant activity was 10-times that of the crude venom. It was an acidic proteinase with isoelectric point of pH 4.2. Upon heat treatment at 60 degrees C, Component II was stable at pH 5.5 and 7.2 for 3 h, but was destroyed completely after 30 min at pH 8.9. It was devoid of esterase or amidase activity. Purified anticoagulant (Component I) was a single peptide chain with molecular weight of 16 000. It was carbohydrate free and contained 136 amino-acid residues. It was a basic protein with an isoelectric point of larger than pH 10. It was a potent phospholipase A with an enzymatic activity of 510 +/- 30 mumol/min per mg using phosphatidylcholine as substrate, and 1 microgram/ml was sufficient to cause 100% hemolysis by the indirect hemolytic method. Upon heat treatment at 90 degrees C, Component I was heat stable at pH 5.5 for more than 3 h, but was destroyed completely after 2 h at pH 7.2 and 8.9. The anticoagulant activity of Component I could be neutralized by platelet factor 3, tissue thromboplastin and cephalin.  相似文献   

17.
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.  相似文献   

18.
Vipera russelli venom induces predominantly neurotoxic, myotoxic necrotic and hemorrhagic symptoms in experimental animals and has several hydrolytic enzyme activities. In this study, V. russelli venom is characterized both as a PLA2 and as a toxin. Anti PL-V Ig (antibodies to a toxic phospholipase A2 VRV PL-V of V. russelli venom) nullifies the toxicity of whole V. russelli venom to a great extent. The neurotoxic symptoms vanish completely in the presence of anti PL-V Ig. The cross reacting components of whole V. russelli venom were removed by precipitating them from whole venom by the addition of anti PL-V Ig. The non-cross reacting components present in the supernatant were checked for toxicity. There was a significant reduction in toxicity. The LD50 value of the supernatant had increased from 4.1 mg/kg body weight to 11.7 mg/kg body weight and it showed about 34% of the total venom phospholipase A2 activity. It had edema forming, hemorrhagic and hemolytic activity but failed to induce neurotoxic, anticoagulant and myotoxic effects.  相似文献   

19.
A primary effect of a novel H-toxin of Clostridium septicum on the hemolysis of rabbit erythrocytes was shown to be the activation of phospholipase A2 (PLA2) associated with rabbit erythrocyte membranes by 20-fold that of controls. Furthermore, the activation of PLA2 induced by the H-toxin was enhanced in the presence of NAD. The H-toxin itself had no PLA2 activity. On the contrary, the H-toxin bound to palmitic acid at a molar proportion of 1:1 and lost its hemolytic activity. The PLA2 was not activated by the H-toxin bound to palmitic acid. These results suggest that activation of the PLA2 is responsible for development of the hemolytic activity of the H-toxin.  相似文献   

20.
Cogo JC  Lilla S  Souza GH  Hyslop S  de Nucci G 《Biochimie》2006,88(12):1947-1959
Bothrops snake venoms contain a variety of phospholipases (PLA(2)), some of which are myotoxic. In this work, we used reverse-phase HPLC and mass spectrometry to purify and sequence two PLA(2) from the venom of Bothrops insularis. The two enzymes, designated here as BinTX-I and BinTx-II, were acidic (pI 5.05 and 4.49) Asp49 PLA(2), with molecular masses of 13,975 and 13,788, respectively. The amino acid sequence and molecular mass of BinTX-I were identical to those of a PLA(2) previously isolated from this venom (PA2_BOTIN, SwissProt accession number ) while those of BinTX-II indicated that this was a new enzyme. Multiple sequence alignments with other Bothrops PLA(2) showed that the amino acids His48, Asp49, Tyr52 and Asp99, which are important for enzymatic activity, were fully conserved, as were the 14 cysteine residues involved in disulfide bond formation, in addition to various other residues. A phylogenetic analysis showed that BinTX-I and BinTX-II grouped with other acidic Asp49 PLA(2) from Bothrops venoms, and computer modeling indicated that these enzymes had the characteristic structure of bothropic PLA(2) that consisted of three alpha-helices, a beta-wing, a short helix and a calcium-binding loop. BinTX-I (30 microg/paw) produced mouse hind paw edema that was maximal after 1h compared to after 3h with venom (10 and 100 microg/paw); in both cases, the edema decreased after 6h. BinTX-1 and venom (40 microg/ml each) produced time-dependent neuromuscular blockade in chick biventer cervicis preparations that reached 40% and 95%, respectively, after 120 min. BinTX-I also produced muscle fiber damage and an elevation in CK, as also seen with venom. These results indicate that BinTX-I contributes to the neuromuscular activity and tissue damage caused by B. insularis venom in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号