首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carrageenans extracted from cystocarpic and tetrasporic Stenogramme interrupta were analysed by chemical and spectroscopic methods. The carrageenan from cystocarpic plants is composed predominantly of 0.5 M KCl-insoluble and 1 M KCl-soluble fractions. The insoluble fraction contained iota-carrageenan as the major component with alpha-carrageenan and pyruvated carrageenan as minor components. The soluble fraction is highly heterogeneous and did not contain the precursors mu- and nu-carrageenans. The polysaccharide from tetrasporic plants is composed of zeta- and lambda-carrageenans, and low sulfated galactans. It is soluble in KCl and partly cyclized by alkaline treatment. The antiviral and anticoagulant properties of the insoluble polysaccharide fraction from cystocarpic S. interrupta and the polysaccharide from tetrasporic S. interrupta are reported the results of which suggest promising antiherpetic activity.  相似文献   

2.
3.
Analysis of rice Act1 5' region activity in transgenic rice plants.   总被引:7,自引:0,他引:7       下载免费PDF全文
W Zhang  D McElroy    R Wu 《The Plant cell》1991,3(11):1155-1165
The 5' region of the rice actin 1 gene (Act1) has been developed as an efficient regulator of foreign gene expression in transgenic rice plants. To determine the pattern and level of rice Act1 5' region activity, transgenic rice plants containing the Act1 5' region fused to a bacterial beta-glucuronidase (Gus) coding sequence were generated. Two independent clonal lines of transgenic rice plants were analyzed in detail. Quantitative analysis showed that tissue from these transgenic rice plants have a level of GUS protein that represents as much as 3% of total soluble protein. We were able to demonstrate that Act1-Gus gene expression is constitutive throughout the sporophytic and gametophytic tissues of these transgenic rice plants. Plants from one transgenic line were analyzed for the segregation of GUS activity in pollen by in situ histochemical staining, and the inheritance and stability of Act1-Gus expression were assayed in subsequently derived progeny plants.  相似文献   

4.
Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles,that is,alternation of multicellular gametophytic and sporophytic generations.The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent,dominant sporophyte and a reduced gametophyte.The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories.The Antithetic Theory proposes a green algal ancestor with a gametophyte-dominant haplobiontic life cycle.The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations.The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats.Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants.In recent years,exceptionally well-preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian,410 Ma),and the complete life cycle of several Rhynie chert plants has been reconstructed.All show an alternation of more or less isomorphic generations,which is currently accepted as the plesiomorphic condition among all early polysporangiophytes,including basal tracheophytes.Here we review the existing evidence for early embryophyte gametophytes.We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes.All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

5.
Abstract Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles, that is, alternation of multicellular gametophytic and sporophytic generations. The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent, dominant sporophyte and a reduced gametophyte. The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories. The Antithetic Theory proposes a green algal ancestor with a gametophyte‐dominant haplobiontic life cycle. The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations. The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats. Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants. In recent years, exceptionally well‐preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian, 410 Ma), and the complete life cycle of several Rhynie chert plants has been reconstructed. All show an alternation of more or less isomorphic generations, which is currently accepted as the plesiomorphic condition among all early polysporangiophytes, including basal tracheophytes. Here we review the existing evidence for early embryophyte gametophytes. We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes. All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

6.
Summary An attempt has been made to manipulate the cytological processes regulating the switch from gametophytic to sporophytic development induced by culturing the microspores of higher plants. Previous studies have indicated that sporophytic development, which leads to the formation of haploid embryos, normally follows the symmetrical division of the microspore rather than the asymmetric mitosis characteristic of normal development. To determine whether symmetry of division is a key factor in the determination of subsequent development, cells were supplied with the antimicrotubule drug colchicine to disrupt elements of the microtubular cytoskeleton believed to be involved in nuclear positioning. The treatment resulted in a highly significant increase in the numbers of cells turning to sporophytic development; further, timed applications indicated that the cells were sensitive to the drug over a 12-h period immediately prior to pollen mitosis. The results suggest that alteration of division symmetry is sufficient to switch the developmental pathway from gametophytic to sporophytic. These findings are discussed in the perspective of current models proposed for the regulation of development in eukaryotic cells.  相似文献   

7.
双受精是被子植物特有的生殖方式,精细胞只有通过花粉管穿过花柱才能到达子房、胚珠受精。花粉管在母本组织中的生长和引导包括孢子体控制(sporophytic control)和配子体控制(gametophytic control)两个连续的过程,现已克隆出不同阶段花粉管生长和引导的基因,通过分析其表达调控揭示出花粉管生长和引导的分子机制。该文就近年来国内外有关花粉管生长和极性引导的调控机制研究进展进行综述,并对禾本科(Poaceae)和十字花科(Brassicaceae)植物花粉管引导的异同点进行了比较分析。  相似文献   

8.
Summary Male gametophytic selection can play a special role in the evolution of higher plant populations. The main assumption — gametophytic-sporophytic gene expression of a large portion of a plant's genes — has been proven by a number of studies. Population analyses have revealed a large amount of variability for male gametophytic fitness. However, the data available do not prove that at least a portion of this variability is due to postmeiotic gene expression. This paper reports the analysis of a synthetic population of maize based on a gametophytic selection experiment, carried out according to a recurrent scheme. After two cycles of selection, the response was evaluated for gametophytic and sporophytic traits. A parameter representing pollen viability and time to germination, although showing a large amount of genetic variability, was not affected by gametophytic selection, indicating that this variability is largely sporophytically controlled. Pollen tube growth rate was significantly affected by gametophytic selection: 21.6% of the genetical variability was released by selection. Correlated response for sporophytic traits was observed for mean kernel weight: 15.67% of the variability was released. The results are a direct demonstration that pollen competitive ability due to pollen tube growth rate and kernel development are controlled, to a considerable extent, by genes expressed in both tissues. They also indicate that gametophytic selection in higher plants can produce a higher evolution rate than sporophytic selection; it can thus serve to regulate the amount of genetic variability in the populations by removing a large amount of the genetic load produced by recombination.  相似文献   

9.
In contrast to sporophytic tissues, mature pollen of higher plants does not synthesize the typical set of heat-shock proteins (HSPs) in response to a marked temperature upshift. Immature grains, however, seem able to do so, at least partially. We investigated the characteristics of HSP synthesis throughout the male gametophytic phase in maize and compared gametophytic and sporophytic heat-shock responses. One-dimensional Sodium dodecyl sulfate-polyacryl-amide gel electrophoresis technique (SDS-PAGE) of newly synthesized proteins revealed that immature pollen synthesizes HSPs, some of which are not induced in sporophytic tissues. The heat-shock response appeared to be related to microgametophytic developmental stages. The strongest response was found in uninucleate microspores: at this stage, in addition to the sporophytic 102, 84, 72, and 18 kD HSPs, three other polypeptides of 74, 56, and 46 kD were observed. In the binucleate and trinucleate stages, only a reduced synthesis of few HSPs could be induced, and differences between genotypes were observed. In germinating pollen, HSP synthesis was not induced under a voriety of heat-stress conditions; however, the consti-tutive synthesis of two polypeptides of the same molecular weight, 72 and 64 kD, as two HSPs was observed. The biological significance of these results is discussed.  相似文献   

10.
Maternal control of higher plant seed development is likely to involve female sporophytic as well as female gametophytic genes. While numerous female sporophytic mutants control the production of the ovule and the embryo sac true maternal effect mutations affecting embryo and endosperm development are rare in plants. A new class of female gametophytic mutants has been isolated that controls autonomous development of endosperm. Molecular analyses of these genes, known as FIS class genes, suggest that they repress downstream seed development genes by chromatin remodelling. Expression of the FIS genes in turn is modulated by parent specific expression or genomic imprinting which in turn is controlled by DNA methylation. Thus maternal control of seed development is a complex developmental event influenced by both genetic and epigenetic processes.  相似文献   

11.
Trypsin-like enzyme activity in spent culture media from 3-d-old batch cultures of Bacteroides gingivalis W50 was measured by using the hydrolysis of N alpha-benzoyl-L-arginine-p-nitroanilide. The cell-free culture medium was fractionated by differential centrifugation at 10,000 g and 75,000 g, yielding two particulate fractions and a soluble supernatant fraction. About 80% of the total recoverable activity was associated with the particulate fractions, the remainder being in the supernatant. Electron microscopy of ruthenium-red/osmium stained ultrathin sections of the pellet fractions showed them to be composed of vesicular particles (extracellular vesicles), between 50 and 250 nm in diameter. Enzyme activity in all three fractions was enhanced by dithiothreitol. Gel-permeation chromatography of the soluble fraction yielded one peak of activity which contained 64 kDa and 58 kDa polypeptides. Enzyme activity from the vesicular fractions could be solubilized by sonication, giving a similar chromatographic profile to the supernatant fraction. The main peak of activity was composed of 64 kDa and 58 kDa polypeptides. In addition, there was a higher molecular mass enzyme activity peak composed of the 64 kDa and 58 kDa components along with 111 kDa, 93 kDa and 70 kDa polypeptides. We conclude that the trypsin-like enzyme of B. gingivalis is released as a soluble protein and is also associated with extracellular vesicles, in which it may exist as a soluble component and also as a protein complex.  相似文献   

12.
The nuclear fraction isolated from Krebs II ascites cells following cell disruption by nitrogen cavitation was separated into four fractions by salt/detergent extraction: NP-40 soluble fraction, 130 mM KCl extract, DOC/Triton × 100 soluble fraction and salt/detergent treated nuclei. The protein composition of the individual fractions was studied by SDS-PAGE and the relative amounts of actin and a 35 kDa protein (p35) were measured from gel scans. There was a time-dependent shift of actin from the 130 mM KCl extract to the NP-40 soluble fraction upon storage of the nuclear fraction on ice, indicating a progressive depolymerization of microfilaments. Compared with actin there was a slower release of p35 into the NP-40 soluble fraction. The results suggest that p35 is not integrated in the microfilament network. Phalloidin, which stabilizes the microfilaments, enriched the amount of both proteins in the 130 mM KCl extracts, together with a series of other proteins in the range 50–205 kDa. The presence of phalloidin also resulted in a large increase in the actin content in both the DOC/Triton × 100 extract and the fraction containing salt/detergent treated nuclei. Incubation of cells with insulin and/or cycloheximide enriched the amount of actin in the 130 mM KCl fraction. The results show that short term incubation of cells with phalloidin, insulin or cycloheximide increases the actin content of the nuclear fraction and also affects the presence of several other proteins.  相似文献   

13.
The present paper deals with the experimental researches on the gametophytic and sporophytic pathways of pollen development in Oryza sativa L. Subsp. Keng, Cultivar Jinghong No. 2. Three methods of culture were used: (1) The lemma, palea and pistil of excised spikelets were removed and the pedicel was inserted vertically into the medium with the intact stamens standing freely above the medium surface (vertical culture). (2) The spikelets were manipulated similarly but placed horizontally on the medium so that their anthers were directly contacted with the latter ('horizontal culture'). (3) The anthers were excised and inoculated separately (anther culture). In all cases the pollen stage at inoculation was in late uninucleate. N6 basic medium supplemented with or without MCPA (2 ppm) was used. After inoculation the samples were collected periodically for cytological observation. In all cases the pollen passed a short stage of gametophytic development, forming a vegetative and a generative cell, then various pathways commenced in different cultures. In vertical culture, most of the pollen went on .along. the gametophytic pathway up to normal 3-celled stage, but some showed anomalous divisions of vegetative or/and generative nuclei, indicating an initiation of sporophytic development. In horizontal culture, the sporophytic deve]opment went on further, producing some calluses, though the main pollen population remained as gametophyte. In anther culture, the gametophytic pathway to a mature 3-celled pollen was blocked, the unique pathway being sporophytic. In rice, the pollen developed along sporophytic path- way mainly via A route. These comparative investigations indicate that there are two chief factors concerning the switch of pollen development from one pathway to another: first, to be freed from the in vivo restrictions, which, as suggested by Sunderland and as sup- ported by the results of vertical culture in our experiments, is sufficient to trigger the first sporophytic division, and second, 'direct contact with the medium, which is necessary to support the successive growth of multicellular grains and calluses. As to the exogenous hormone, rather than functioning as an agent triggering sporophytic development, it plays an important role in increasing eventual induction frequency, growth rates and differentiating ability of calluses.  相似文献   

14.
M Baudry  J P Clot  R Michel 《Biochimie》1975,57(1):77-83
Liver mitochondria were isolated from normal and thyroidectomized rats and their protein components analyzed by polyacrylamide gel electrophoresis. In whole mitochondria 35 protein fractions with MW ranging from 10,000 to 135,000 were characterized. In the absence of thyroid hormone secretion, the amount of a MW 54,000 fraction was always decreased. Injection of small doses of 3,5,3'-triiodo-L-thyronine to the thyroidectomized animal restored the quantity of that protein fraction to normal. Isolated outer mitochondrial membranes showed the presence of 20 protein fractions. These fractions revealed no change after thyroidectomy. The mitoplast, which contained 35 fractions, exhibited a decrease of the MW 54,000 component in thyroidectomized rats. The mitoplast was separated into several fractions. Water soluble matrix proteins presented molecular weights ranging between 40,000 and 55,000. Proteins, which were slightly bound to the inner mitochondrial membrane and could be extracted by KCl, presented molecular weights between 25,000 and 45,000. Structural proteins showed a principal specific component of MW equals 23,000. Electrophoretic patterns obtained with these submitochondrial fractions were similar in normal and thyroidectomized animals. The mitoplast fraction which contained the insoluble cytochromes (a, a3, b, c1) was isolated ; its principal constituent, of MW 54,000 was significantly decreased after thyroidectomy. Thus, the lack of thyroid hormone secretion lowered the level of a protein constituent bound to the inner membrane of liver mitochondria. The synthesis of this constituent could be controlled by mitochondrial nucleic acids.  相似文献   

15.
In previous studies, Laminaria saccharina L. (Lamour.) sporophytes were found to exhibit two major peaks of sporogenesis and an annual life cycle in Long Island Sound, New York. Young sporophytes were observed shortly after the sporogenesis peaks in early autumn and spring, but most of the mature sporophytes decayed during summer. A new study was conducted to determine if the spring sporogenesis activity contributed to the recruitment observed in autumn through oversummering of gametophytic and juvenile sporophytic stages, as previously suggested. Reproduction and growth in gametophytes and growth in juvenile sporophytes were studied under crossed gradients of light and temperature. Periodic outplantings of substrata seeded with gametophytic and sporophytic stages to the field were conducted to assess actual survival. The optimum temperature and light conditions for gametophyte development, growth and reproduction varied with the time of year meiospores were obtained. Most of this variation was attributable to temperature. A seasonal adaptation to temperature in most developmental stages was observed. Higher temperatures resulted in greater numbers of male gametophytes. Gametophytic stages could develop at all times, suggesting that oversummering in this stage was possible. Juvenile sporophytes had a narrower optimum temperature range and again photon fluence rate contributed little to observed variances. Out planting of sporophytic stages at various times during the year indicated only sporophytes prepared from autumn and winter could survive summer conditions. The thalli of these plants grew rapidly in spring and eroded back to the meristematic region in summer. Most of these plants then quickly became reproductive, resulting in another autumn sporogenesis peak. Gametophytic and sporophytic outplantings prepared from spring meiospores did not survive the summer. Thus, the recruitment observed in autumn can only be the result of the previous autumn's sporogenesis activity. The sporogenous activities of spring and early summer appear to be unimportant, despite the fact that all reproductive indices are superior at those times.  相似文献   

16.
Cell fractions from the major vegetative organs of tomato and potato plants were obtained by homogenization and differential centrifugation. In both species, steroidal glycoalkaloids were found to accumulate mainly in the soluble fraction, with smaller amounts in the microsomal fraction. Alkaloids appeared sporadically in the mitochondrial fractions but were only detected in lower fractions as an artefact.  相似文献   

17.
THE REGULATION OF ALTERNATION OF GENERATION IN FLOWERING PLANTS   总被引:3,自引:0,他引:3  
The developmental changes involved in the alternation of generation represent the major gene-switching events in the life history of plants. While a large number of genes are common to both sporophyte and gametophyte, many thousand sequences are specifically expressed in each generation; indeed, certain key constituents (e.g. tubulin) are encoded by different genes in each generation, indicating that sporophyte and gametophyte are responding to different evolutionary pressures. Evidence is accumulating that major gene-switching events in plants, such as flowering, are regulated by complex control systems which ensures that development occurs only in the correct groups of cells at the appropriate time. A similar, or more sophisticated system might thus be expected to regulate alternation of generation. It is not possible to manipulate alternation of generation in a similar fashion to flowering, but study of apparent aberrations of development occurring in nature and in vitro suggests that alternation only occurs in cells which have become competent to receive particular developmental stimuli. Further, in certain cases, competent cells may be switched either into sporophytic or gametophytic developmental pathways depending upon the nature of the stimulus. Acquisition of competence seems to involve isolation of cells from the symplast, some cytoplasmic dedifferentiation, and perhaps cell cycle arrest or transition. The stimuli in vivo appear metabolic in nature, although embryogenesis may be activated by specific classes of glycoproteins. Interestingly, examination of agamospermic systems suggests that fertilization of the egg per se is not the signal which activates sporophytic development. Once competent cells have received the stimulus they start to develop, with no delay in a ‘determined’ state. Sporophytic and gametophytic development in vivo and in vitro both start with an asymmetric division, except for the female gametophyte which may arise via a range of developmental pathways, depending on the species.  相似文献   

18.
Abstract

In recent years a number of experimental findings have indicated that in higher plants the gametophytic phase is able to express its own genetic information, a large part of which it shares with the sporophytic generation. Quantitative estimates of haploid and haplodiploid gene expression have been obtained by mRNA and isozyme analysis in several plant species: 60-70% of the genes are expressed in both pollen and plant, about 10% are pollen-specific, and 20% represent the sporophytic domain. Moreover, it has been demonstrated that stage-specific genes are expressed in the gametophytic generation: at least two sets of genes are activated during pollen development, others are expressed only in the postshedding period, during germination and tube growth. Studies have been made to ascertain the role played by gametophyte-expressed genes in pollen development; the in vivo and in vitro pollen tube growth rate has been revealed to be controlled by the gametophyte genome itself. Differential effects of specific chromosomal deficiencies on the development of maize pollen grains have indicated that components of normal microspore development are controlled by genes located in specific parts of the genome. For single gene analysis, gene transfer can be used; on the contrary, for traits with a multifactorial genetic control, direct proof of gene expression both in the gametophytic and the sporophytic generation can be obtained when selection is applied to the pollen population of a hybrid plant, and response to selection is observed in the resulting sporophytic progeny. Response to selection, applied at different stages of the gametophytic phase, has been described in the sporophytic progeny and this with regard to many adaptive traits; thus the phenomenon can have an important bearing on the genetic structure of natural populations and on higher plant evolution, it can also be used as a breeding tool to increase the efficiency of conventional selection methods.  相似文献   

19.
Trehalose 6-phosphate synthase was purified from Selaginella lepidophylla plants and three aggregates of the enzyme were found by molecular exclusion chromatography, ion exchange chromatography and electrophoresis. Molecular exclusion chromatography showed four activity peaks with molecular weights of 624, 434, 224 and 115 kDa. Ion exchange chromatography allowed three fractions to be separated with TPS activity which eluted at 0.35, 0.7 and 1 M KCl. Native PAGE of each pool had three protein bands with apparent M(r) 660, 440 and 200 kDa. Western blot results showed that anti-TPS antibody interacted with 115 and 67 kDa polypeptides; these polypeptides share peptide sequences as indicated by internal sequence data. The effects of pH and temperature on enzyme stability and activity were studied. For fractions eluted at 0.35 and 1.0 M KCl, the optimum pH is 5.5, while an optimum pH of 7.5 for 0.7 M fraction was found. The three fractions eluted from ion exchange chromatography were stable in a pH 5-11 range. Optimal temperatures were 25, 45 and 55 degrees C for 0.7, 0.35 and 1.0 M fractions, respectively. The 0.7 M KCl fraction showed highest stability in a temperature range of 25-60 degrees C, whereas the 0.35 M KCl fraction had the lowest in the same temperature range.  相似文献   

20.
Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2–3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3–4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3–5 mm bud stages, with the SAD and EAR gene products detected in 4–7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号