首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Otolith nucleus chemistry resolved the population structure of Patagonian toothfish Dissostichus eleginoides , an exclusively marine species, along the Patagonian Shelf and North Scotia Ridge out to South Georgia in the Southern Ocean. Concentrations of 55Mn, 88Sr and 137Ba, ratioed to 42Ca, showed a sharp population boundary in the vicinity of the Polar Front, between South Georgia and the North Scotia Ridge. These results validated otolith nucleus chemistry as a technique for examining population structure in Patagonian toothfish, demonstrating that otolith nucleus chemistry can discriminate between populations even in fully marine environments. Moreover, the nucleus chemistry indicated population heterogeneity not previously detected, suggesting the possibility of more than one South American population, and also suggested some South American-caught fish had moved from South Georgia.  相似文献   

2.
The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks.  相似文献   

3.
Perrin C  Wing SR  Roy MS 《Molecular ecology》2004,13(8):2183-2195
New Zealand's 14 deep-water fiords possess persistent salinity stratification and mean estuarine circulation that may serve to isolate populations of marine organisms that have a dispersal larval phase. In order to investigate this idea, we analysed the population structure of the sea star Coscinasterias muricata using a mitochondrial DNA marker. Genetic differentiation among populations of C. muricata was analysed using 366 base pairs of mtDNA D-loop. We compared populations from the fiords with several others sampled from around New Zealand. At a macro-geographical scale (> 1000 km), restricted gene flow between the North and South Islands was observed. At a meso-geographical scale (10-200 km), significant population structure was found among fiords and between fiords and open coast. The pattern of population genetic structure among the fiords suggests a secondary contact between a northern population and a southern one, separated by a contact or mixing zone. These populations may have diverged by the effects of random genetic drift and population isolation as a consequence of the influence of estuarine circulation on dispersal. In northern Fiordland, genetic structure approximated an isolation by distance model. However, the pattern in genetic differences suggests that distance alone cannot explain the most divergent populations and that fiord hydrography may increase the effect of genetic drift within populations in the fiords. Finally, our study indicates that populations within the fiords underwent recent rapid expansion, followed most probably by genetic drift due to a lack of gene flow among the fiords.  相似文献   

4.
Despite having winged queens, female dispersal in the monogynous ant Cataglyphis cursor is likely to be restricted because colonies reproduce by fission. We investigated the pattern of population genetic structure of this species using eight microsatellite markers and a mitochondrial DNA (mtDNA) sequence, in order to examine the extent of female and nuclear gene flow in two types of habitat. Sampling was carried out at a large spatial scale (16 sites from 2.5 to 120 km apart) as well as at a fine spatial scale (two 4.5-km transects, one in each habitat type). The strong spatial clustering of mtDNA observed at the fine spatial scale strongly supported a restricted effective female dispersal. In agreement, patterns of the mtDNA haplotypes observed at large and fine spatial scales suggested that new sites are colonized by nearby sites. Isolation by distance and significant nuclear genetic structure have been detected at all the spatial scales investigated. The level of local genetic differentiation for mitochondrial marker was 15 times higher than for the nuclear markers, suggesting differences in dispersal pattern between the two sexes. However, male gene flow was not sufficient to prevent significant nuclear genetic differentiation even at short distances (500 m). Isolation-by-distance patterns differed between the two habitat types, with a linear decrease of genetic similarities with distance observed only in the more continuous of the two habitats. Finally, despite these low dispersal capacities and the potential use of parthenogenesis to produce new queens, no signs of reduction of nuclear genetic diversity was detected in C. cursor populations.  相似文献   

5.
Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.  相似文献   

6.
Wetlands are naturally patchy habitats, but patchiness has been accentuated by the extensive wetlands loss due to human activities. In such a fragmented habitat, dispersal ability is especially important to maintain gene flow between populations. Here we studied population structure, genetic diversity and demographic history of Iberian and North African populations of two wetland passerines, the Eurasian reed warbler Acrocephalus scirpaceus and the moustached warbler Acrocephalus melanopogon. These species are closely related and sympatric in our study sites, but the reed warbler is a widespread long‐distance migrant while the moustached warbler's breeding range is patchier and it is resident or migrates over short distances. Using microsatellite and mtDNA data, we found higher differentiation in moustached than in reed warblers, indicating higher dispersal capability of the latter species. Our results also suggest that the sea limits dispersal in the moustached warbler. However, we found evidence of gene flow between the study sites in both species, indicating a capability to compensate for habitat fragmentation. In most cases, the gene flow was restricted, possibly because of the large distances between study sites (from ca 290 to 960 km) or breeding site fidelity. The reed warbler had higher haplotype diversity, likely due to dispersal from different populations, past admixture event and a larger population size. We found also signs of postglacial population growth for both species and evidence of a recent colonization or re‐colonization of the Mallorca Island by the moustached warbler.  相似文献   

7.
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population‐specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.  相似文献   

8.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

9.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

10.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

11.
Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average FST (0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.  相似文献   

12.
Four microsatellite DNA markers were developed which were used to examine the relationship between landscape and population genetic structure among a set of populations of the butterfly Parnassius smintheus located in the foothills of the Canadian Rockies. Detailed information on the dispersal of adult butterflies among this same set of populations was available. Simple and partial Mantel tests were used to examine the relationships between genetic distances, predicted rates of dispersal, and a number of landscape variables, all measured pairwise for 17 sample sites. Nei's standard genetic distance was negatively correlated with predicted dispersal. We observed a significant pattern of isolation by distance at a very small spatial scale. The distance between sites that was through forest was a stronger predictor of genetic distance than the distance through open meadow, indicating a significant effect of landscape on population genetic structure beyond that of simple isolation by distance. Our results suggest that rises in the tree-line in alpine areas, caused by global warming, will lead to reduced gene flow among populations of P. smintheus.  相似文献   

13.
Abstract We developed microsatellite markers and combined them with mitochondrial markers to analyse the population genetic structure of the queenless ant Diacamma indicum. This species, lacking winged queens, is likely to have a restricted female dispersal but exhibits various life history traits suggesting higher dispersal abilities than the other Diacamma species. Only 4 of 11 microsatellites were polymorphic and only 1 had more than 4 alleles over 166 individuals originating from 7 populations from the south of India. Only one mitochondrial DNA (mtDNA) haplotype was detected throughout India (including one population in the north) and Sri Lanka. Such a level of polymorphism is particularly low compared with other Diacamma species having much smaller ranges in the south of India. A strong genetic differentiation was observed between populations separated by more than a few kilometres. We also analysed the genetic differentiation between the Indian populations and two populations from the Japanese island of Okinawa, which are morphologically similar and might belong to the same species. The genetic differentiation was high for both markers, suggesting an absence of ongoing gene flow between these populations.  相似文献   

14.
To assess the genetic diversity of Japanese native horse populations, we examined seven such populations using mitochondrial DNA (mtDNA) and microsatellite analyses. Four reference populations of Mongolian horses and European breeds were employed as other equids. In the mtDNA analysis, the control region (D-loop) of 411 bp was sequenced, and 12 haplotypes with 33 variable sites were identified in the Japanese native horses. The phylogenetic tree constructed by haplogrouping and using worldwide geographic references indicated that the haplotypes of the Japanese native horses were derived from six equid clusters. Compared with the foreign populations, the Japanese native populations showed lower within-population diversity and higher between-population differentiation. Microsatellite analysis, using 27 markers, found an average number of alleles per locus of 9.6 in 318 native and foreign horses. In most native populations, the within-population diversity was lower than that observed in foreign populations. The genetic distance matrix based on allelic frequency indicated that several native populations had notably high between-population differentiation. The molecular coancestry-based genetic distance matrix revealed that the European populations were differentiated from the Japanese and Mongolian populations, and no clear groups could be identified among the Japanese native horse populations. The genetic distance matrices had few correlations with the geographic distribution of the Japanese native populations. Based on the results of both mtDNA and microsatellite analyses, it could be speculated that each native population was formed by the founder populations derived from Mongolian horses. The genetic construction of each population appears to have been derived from independent breeding in each local area since the time of population fission, and this was accompanied by drastic genetic drift in recent times. This information will help to elucidate the ancestry of Japanese native horses. An erratum to this article can be found at  相似文献   

15.
The genetic variability and population structure of worldwide populations of the sperm whale was investigated by sequence analysis of the first 5''L 330 base pairs in the mitochondrial DNA (mtDNA) control region. The study included a total of 231 individuals from three major oceanic regions, the North Atlantic, the North Pacific and the Southern Hemisphere. Fifteen segregating nucleotide sites defined 16 mtDNA haplotypes (lineages). The most common mtDNA types were present in more than one oceanic region, whereas ocean-specific types were rare. Analyses of heterogeneity of mtDNA type frequencies between oceans indicated moderate (GST = 0.03) but statistically significant (p = 0.0007) genetic differentiation on a global scale. In addition, strong genetic differentiation was found between potential social groups (GST = 0.03-0.6), indicating matrilineal relatedness within groups. The global nucleotide diversity was quite low (pi = 0.004) implying a recent common mtDNA ancestry (< 100,000) years ago) and a young global population structure. However, within this time period, female dispersal has apparently been limited enough to allow the development of global mtDNA differentiation. The results are consistent with those from observational studies and whaling data indicating stable social affiliations, some degree of area fidelity and latitudinal range limitations in groups of females and juveniles.  相似文献   

16.
Eighteen polymorphic microsatellite loci and 11 single‐nucleotide polymorphisms were genotyped in 1 095 individual Hessian fly specimens representing 23 populations from North America, southern Europe, and southwest Asia. The genotypes were used to assess genetic diversity and interrelationship of Hessian fly populations. While phylogenetic analysis indicates that the American populations most similar to Eurasian populations come from the east coast of the United States, genetic distance is least between (Alabama and California) and (Kazakhstan and Spain). Allelic diversity and frequency vary across North America, but they are not correlated with distance from the historically documented point of introduction in New York City or with temperature or precipitation. Instead, the greatest allelic diversity mostly occurs in areas with Mediterranean climates. The microsatellite data indicate a general deficiency for heterozygotes in Hessian fly. The North American population structure is consistent with multiple introductions, isolation by distance, and human‐abetted dispersal by bulk transport of puparia in infested straw or on harvesting equipment.  相似文献   

17.
The African buffalo ( Syncerus caffer ) is widespread throughout sub-Saharan Africa and is found in most major vegetation types, wherever permanent sources of water are available, making it physically able to disperse through a wide range of habitats. Despite this, the buffalo has been assumed to be strongly philopatric and to form large aggregations that remain within separate home ranges with little interchange between units, but the level of differentiation within the species is unknown. Genetic differences between populations were assessed using mitochondrial DNA (control region) sequence data and analysis of variation at six microsatellite loci among 11 localities in eastern and southern Africa. High levels of genetic variability were found, suggesting that reported severe population bottlenecks due to outbreak of rinderpest during the last century did not strongly reduce the genetic variability within the species. The high level of genetic variation within the species was found to be evenly distributed among populations and only at the continental level were we able to consistently detect significant differentiation, contrasting with the assumed philopatric behaviour of the buffalo. Results of mtDNA and microsatellite data were found to be congruent, disagreeing with the alleged male-biased dispersal. We propose that the observed pattern of the distribution of genetic variation between buffalo populations at the regional level can be caused by fragmentation of a previous panmictic population due to human activity, and at the continental level, reflects an effect of geographical distance between populations.  相似文献   

18.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

19.
Pacific herring show an abrupt genetic discontinuity in the central North Pacific that represents secondary contact between refuge populations previously isolated during Pleistocene glaciations. Paradoxically, high levels of gene flow produce genetic homogeneity among ocean-type populations within each group. Here, we surveyed variability in mtDNA control-region sequences (463 bp) and nine microsatellite loci in Pacific herring from sites across the North Pacific to further explore the nature of the genetic discontinuity around the Alaska Peninsula. Consistent with previous studies, little divergence (ΦST  = 0.011) was detected between ocean-type populations of Pacific herring in the North West Pacific, except for a population in the Yellow Sea (ΦST  = 0.065). A moderate reduction in genetic diversity for both mtDNA and microsatellites in the Yellow Sea likely reflects founder effects during the last colonization of this sea. Reciprocal monophyly between divergent mtDNA lineages (ΦST  = 0.391) across the Alaska Peninsula defines the discontinuity across the North Pacific. However, microsatellites did not show a strong break, as eastern Bering Sea (EBS) herring were more closely related to NE Pacific than to NW Pacific herring. This discordance between mtDNA and microsatellites may be due to microsatellite allelic convergence or to sex-biased dispersal across the secondary contact zone. The sharp discontinuity between Pacific herring populations may be maintained by high-density blocking, competitive exclusion or hybrid inferiority.  相似文献   

20.
Doums C  Cabrera H  Peeters C 《Molecular ecology》2002,11(11):2251-2264
In this study we investigated the population genetic structure of the queenless ant Diacamma cyaneiventre. This species, lacking winged queens, is likely to have a restricted female dispersal. We used both mitochondrial and microsatellite markers to assess the consequence of such restricted female dispersal at three geographical scales: within a given locality (< 1 km), between localities within a given region (< 10 km) and between regions (> 36 km). Within a locality, a strong population structure was observed for mitochondrial DNA (mtDNA) whereas weak or nonexistent population genetic structure was observed for the microsatellites (around 5% of the value for mtDNA). Male gene flow was estimated to be about 20-30 times higher than female gene flow at this scale. At a larger spatial scale, very strong genetic differentiation for both markers was observed between localities - even within a single region. Female dispersal is nonexistent at these scales and male dispersal is very restricted, especially between regions. The phylogeographical structure of the mtDNA haplotypes as well as the very low genetic diversity of mtDNA within localities indicate that new sites are colonized by a single migration event from adjacent localities, followed by successive colony fissions. These patterns of genetic variability and differentiation agree with what is theoretically expected when colonization events are kin-structured and when, following colonization, dispersion is mainly performed by males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号