首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generalized structures of the 5S ribosomal RNAs.   总被引:15,自引:14,他引:1       下载免费PDF全文
The sequences of 5S ribosomal RNAs from a wide-range of organisms have been compared. All sequences fit a generalized 5S RNA secondary structural model. Twenty-three nucleotide positions are found universally, i.e., in 5S RNAs of eukaryotes, prokaryotes, archaebacteria, chloroplasts and mitochondria. One major distinguishing feature between the prokaryotic and eukaryotic 5S RNAs is the number of nucleotide positions between certain universal positions, e.g., prokaryotic 5S RNAs have three positions between the universal positions PuU40 and G44 (using the E. coli numbering system) and eukaryotic 5S RNAs have two. The archaebacterial 5S RNAs appear to resemble the eukaryotic 5S RNAs to varying degrees depending on the species of archaebacteria although all the RNAs conform with the prokaryotic "rule" of chain length between PuU40 and G44. The green plant chloroplast and wheat mitochondrial 5S RNAs appear prokaryotic-like when comparing the number of positions between universal nucleotides. Nucleotide positions common to eukaryotic 5S RNAs have been mapped; in addition, nucleotide sequences, helix lengths and looped-out residues specific to phyla are proposed. Several of the common nucleotides found in the 5S RNAs of metazoan somatic tissue differ in the 5S RNAs of oocytes. These changes may indicate an important functional role of the 5S RNA during oocyte maturation.  相似文献   

2.
The 4.5S RNA gene from Pseudomonas aeruginosa.   总被引:5,自引:3,他引:2       下载免费PDF全文
  相似文献   

3.
Small cytoplasmic RNA (scRNA; 271 nucleotides) is an abundant, stable RNA identified in the Gram-positive eubacterium Bacillus subtilis. Several findings suggest an important role of scRNA in protein biosynthesis: it shares structural and biochemical features with the Escherichia coli 4.5S RNA (114 nucleotides), a molecule known to be involved in this process, and it can complement the essential function of 4.5S RNA in vivo. The common apical hairpin motif of scRNA and 4.5S RNA also exists in eukaryotic 7SL RNA, the RNA component of the signal recognition particle. To elucidate the higher-order structure of scRNA, we have combined a phylogenetic approach with a biochemical one. The sequence of scRNA from a thermophilic relative of B. subtilis, Bacillus stearothermophilus, was determined and compared with the B. subtilis scRNA. In addition, the solution structure of B. stearothermophilus scRNA was probed with single- and double-strand-specific nucleases. Both types of analysis support a secondary structure model for scRNA that strongly resembles 4.5S RNA and respective parts of 7SL RNA. The results provide further evidence for the suggestion of a functional relationship between these RNAs.  相似文献   

4.
Primary and secondary structure of U8 small nuclear RNA   总被引:20,自引:0,他引:20  
U8 small nuclear RNA is a new, capped, 140 nucleotides long RNA species found in Novikoff hepatoma cells. Its sequence is: m3GpppAmUmCGUCAGGA GGUUAAUCCU UACCUGUCCC UCCUUUCGGA GGGCAGAUAG AAAAUGAUGA UUGGAGCUUG CAUGAUCUGC UGAUUAUAGC AUUUCCGUGU AAUCAGGACC UGACAACAUC CUGAUUGCUU CUAUCUGAUUOH. This RNA is present in approximately 25,000 copies/cell, and it is enriched in nucleolar preparations. Like U1, U2, U4/U6, and U5 RNAs, U8 RNA was also present as a ribonucleoprotein associated with the Sm antigen. The rat U8 RNA was highly homologous (greater than 90%) to a recently characterized 5.4 S RNA from mouse cells infected with spleen focus-forming virus (Kato, N., and Harada, F. (1984) Biochim. Biophys. Acta, 782, 127-131). In addition to the U8 RNA, three other U small nuclear RNAs were found in anti-Sm antibody immunoprecipitates from labeled rat and HeLa cells. Each of these contained a m3GpppAm cap structure; their apparent chain lengths were 60, 130, and 65 nucleotides. These U small nuclear RNAs are designated U7, U9, and U10 RNAs, respectively.  相似文献   

5.
Small nuclear ribonucleoprotein particles (snRNPs) from eucaryotic cells can be fractionated on affinity columns prepared with antibodies of high affinity for 2,2,7-trimethyl-guanosine (m3G), which is present in the 5'-terminal caps of the snRNAs. While the snRNPs U1, U2 and U5 are eluted with the nucleoside m3G in the presence of 0.1 M salt, the snRNP species U4 and U6 are only desorbed when the salt concentration is increased. The same fractionation pattern was likewise observed for snRNPs from HeLa or Ehrlich ascites tumor cells. Since U6 RNA lacks the m3G residue and its RNA does not react with anti-m3G, its co-chromatography with U4 RNP on anti-m3G affinity columns suggests either that discrete snRNPs U4 and U6 are intimately associated in nuclear extracts or that both RNAs are organized in one ribonucleoprotein particle. Further evidence for a U4/U6 RNP particle is obtained by sedimentation studies with purified snRNPs in sucrose gradients. Gel fractionation of RNAs shows identical distributions of snRNAs U4 and U6 in the gradient, and the U4/U6 RNP particle sediments faster than the snRNPs U1 or U2. Physical association between snRNPs U4 and U6 during sedimentation is shown by their co-precipitation with anti-m3G IgG from the gradient fractions. Finally, experimental evidence is provided that snRNAs U4 and U6 are associated by intermolecular base pairing in the U4/U6 RNP particle, as demonstrated by our finding that anti-m3G IgG co-precipitates U6 RNA with U4 RNA following phenolization of U4/U6 RNPs at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The complete nucleotide sequence of tRNAPhe and 5S RNA from the photosynthetic bacterium Rhodospirillum rubrum has been elucidated. A combination of in vitro and in vivo labelling techniques was used. The tRNAPhe sequence is 76 nucleotides long, 7 of which are modified. The primary structure is typically prokaryotic and is most similar to the tRNAPhe of Escherichia coli and Anacystis nidulans (14 differences of 76 positions). The 5S ribosomal RNA sequence is 120 nucleotides long and again typical of other prokaryotic 5S RNAs. The invariable GAAC sequence is found starting at position 45. When aligned with other prokaryotic 5S RNA sequences, a surprising amount of nucleotide substitution is noted in the prokaryotic loop region of the R. rubrum 5S RNA. However, nucleotide complementarity is maintained reinforcing the hypothesis that this loop is an important aspect of prokaryotic 5S RNA secondary structure. The 5S and tRNAPhe are the first complete RNA sequences available from the photosynthetic bacteria.  相似文献   

7.
The mini-exon, a short segment found at the 5' end of trypanosome mRNAs, is contributed by a small RNA, the mini-exon donor (medRNA). In vivo 32P-labeled medRNA, a set of smaller RNAs related to it, and mRNA, were purified from Trypanosoma brucei by hybrid selection and gel electrophoresis. Using RNA fingerprinting and sequencing techniques, mini-exon oligonucleotides were identified and characterized. We detected a novel 5' terminal capped oligonucleotide present in both medRNA and mRNA. This structure contained m7G and at least four modified nucleotides, not identified previously. If the T. brucei mini-exon has exactly four transcribed nucleotides upstream from its originally designated 5' end, it would begin with the sequence: m7GpppA*A*C*U*AA*CG (asterisks denote modification) and medRNA would be 140 nucleotides long, excluding the m7G residue. The mini-exon contains, and retains during its transfer to mRNA, a novel 5' terminal structure whose presence could confer unique functional attributes.  相似文献   

8.
9.
Transcription of the human adenovirus E1a gene in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
H Handa  K Mizumoto  K Oda  T Okamoto  T Fukasawa 《Gene》1985,33(2):159-168
  相似文献   

10.
The nucleotide sequence of Mycoplasma mycoides sp. capri PG3 formylmethionine tRNA has been determined, using in vitro labeling techniques, to be pC-G-C-G-G-G-G-s4U-A-G-A-G-C-A-G-U-D (U)-G-G-D-A-G-C-U-C-G-C-C-G-G-G-C-U-C-A-U-A-A-C-C-C-G-G-A-G-G-C-C-G-C-A-G-G-U-psi- C-G-A-G-U-C-C-U-G-C-C-C-C-C-G-C-A-A-C-C-AOH. This tRNA contains only three modified nucleosides s4U, D and psi, all of which are derived from uridine. Both in the structural features which distinguish eukaryotic from prokaryotic initiator RNAs and in the overall sequence, this tRNA resembles a typical prokaryotic initiator tRNA. A comparison of the sequence of this tRNA with those of other prokaryotic initiator tRNAs suggests that taxonomically the Mycoplasma may be less related to the Cyanophyta (Anacystis nidulans) than to the bacteria and less related to the Enterobacteriaceae (Escherichia coli) than to the Bacillaceae (Bacillus subtilis).  相似文献   

11.
12.
Small nuclear ribonucleoproteins (snRNPs) containing U1 and U5 snRNAs from HeLa cells have been fractionated using a combination of isopycnic centrifugation in cesium chloride and ion-exchange chromatography on DEAE-Sepharose. The procedure is based on the extreme stability conferred upon snRNPs by Mg2+ enabling them to withstand the very high ionic strength that prevails in cesium chloride. U1 snRNP prepared by this method contains all nine major proteins (68K, A, B, B', C, D, E, F, G) corresponding to those previously identified by immunoprecipitation and is therefore precipitable by anti-RNP and anti-Sm antibodies. U5 snRNP purified in this way contains the common D to G proteins and is also enriched in a 25 X 10(3) Mr protein that may be U5 snRNP-specific. The core-resistant U5 snRNA sequence (nucleotide 84 to 3' OH) covered by D to G proteins is extended by only six nucleotides. A similar situation is seen in U4-U6 snRNP, which we have obtained in a sufficiently pure form to examine protected sequences. However, the core-resistant sequence of U4 (nucleotide 116 to 3' OH) in U4-U6 snRNP is extended by 37 nucleotides, suggesting that the protein composition of this particle could be more complex than that of U5 snRNP. The ribonucleoprotein organization of snRNPs is summarized and discussed in view of our current knowledge on snRNA sequences protected by proteins.  相似文献   

13.
We have used Rp-phosphorothioate modifications and a binding interference assay to analyse the role of phosphate oxygens in tRNA recognition by Escherichia coli ribonuclease P (RNase P) RNA. Total (100%) Rp-phosphorothioate modification at A, C or G positions of RNase P RNA strongly impaired tRNA binding and pre-tRNA processing, while effects were less pronounced at U positions. Partially modified E. coli RNase P RNAs were separated into tRNA binding and non-binding fractions by gel retardation. Rp-phosphorothioate modifications that interfered with tRNA binding were found 5' of nucleotides A67, G68, U69, C70, C71, G72, A130, A132, A248, A249, G300, A317, A330, A352, C353 and C354. Manganese rescue at positions U69, C70, A130 and A132 identified, for the first time, sites of direct metal ion coordination in RNase P RNA. Most sites of interference are at strongly conserved nucleotides and nine reside within a long-range base-pairing interaction present in all known RNase P RNAs. In contrast to RNase P RNA, 100% Rp-phosphorothioate substitutions in tRNA showed only moderate effects on binding to RNase P RNAs from E. coli, Bacillus subtilis and Chromatium vinosum, suggesting that pro-Rp phosphate oxygens of mature tRNA contribute relatively little to the formation of the tRNA-RNase P RNA complex.  相似文献   

14.
15.
Cai Z  Liang TJ  Luo G 《Journal of virology》2004,78(7):3633-3643
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.  相似文献   

16.
Nucleotide sequence of a lysine tRNA from Bacillus subtilis.   总被引:2,自引:5,他引:2       下载免费PDF全文
A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG.  相似文献   

17.
18.
Immune precipitation assays with antibodies specific for 2,2,7-trimethylguanosine (m2,2,7(3)G) have been used to study the accessibility of the 5'-terminal m2,2,7(3)G-containing caps of eucaryotic small nuclear RNAs (snRNAs) either as naked RNAs or in intact small nuclear ribonucleoprotein (snRNPs). The antibody selectively precipitates snRNA species U1a, U1b, U2, U4, and U5 from total deproteinized RNA isolated from Ehrlich ascites cells. Binding by the antibody occurs via the m2,2,7(3)G moiety of the snRNAs' caps, since complex formation with the antibody can be completely abolished by excess nucleoside m2,2,7(3)G. The specificity of the antibody is further demonstrated by the complete absence of reaction with deproteinized snRNA species U6, the 5' terminus of which does not contain m2,2,7(3)G. Most importantly, the cap structures of the snRNAs U1a, U1b, U2, U4, and U5 are also accessible for anti-m2,2,7(3)G IgGs when intact snRNPs are reacted with the antibody. In this case, snRNP species U6 is coprecipitated, suggesting that there are intermolecular interactions between this and other snRNPs. Our data demonstrate that the 5'-terminal regions of the above snRNAs are not protected by the snRNP proteins. This finding is of special interest for snRNP species U1, and is discussed in terms of a model which proposes that the 5'-terminal region of U1 participates in the proper alignment of splice junctions in eucaryotic pre-mRNAs (Lerner, M. R., Boyle, J.A., Mount, S.M., Wolin, S.L., and Steitz, J. A. (1980) Nature (Lond.) 283, 220-224).  相似文献   

19.
Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intron. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, we determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. We demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3' and 5' splice sites as are used in C. elegans. The branch point used lies in the inserted sequence. We conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.  相似文献   

20.
Nuclei of MPC 11 mouse myeloma cells contain several species of small RNAs related to those found in other mammalian cells. These include U1 RNA, about 190 nucleotides in length and U2 RNA, about 170 nucleotides long. The 5'-termini of 32P-labelled U1 and U2 RNAs have been investigated by a fingerprinting technique involving digestion with T2-ribonuclease. The RNAs were found to have modified 5'-terminal structures of the form m3G(5')ppp (5')AmpUmpAp for U1 RNA and m3G(5')ppp(5')AmpUmpCmpCp for U2 RNA, where m3G is N2, N27-trimethyl guanosine and Am and Um are 2'-O-methyl nucleosides. These 5'-terminal sequences are the same as those proposed for rat hepatoma U1 and U2 RNAs (Ro-Choi et al., Fed. Proc. 33, 1548, 1974) but with triphosphate rather than diphosphate links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号