首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinumwas induced by transfer of plants from 100 to 400 mM NaCl. Diurnalmalate fluctuations developed slowly; maximum rates of net malatesynthesis in the dark were reached only on the 10th day afterNaCl was increased to 400 mM. In contrast, phosphoenolpyruvatecarboxylase (PEPC) activity, assayed at optimum pH of 8–0,had nearly reached its maximum on the 5th day after plants weretransferred to 400 mM NaCl. Characteristics of PEPC changedduring the first 12 d of exposure of plants to 400 mM NaCl.There were increases in the ratio of PEPC activity at pH 7 0/PEPCactivity at pH 8.0, and decreases in the Km for PEP measuredat pH 7.0, and possibly in the degree of malate inhibition.All further measurements were made once CAM was well established.In vivo rates of malate synthesis were 14–18 times smallerthan PEPC activity at 2 mM PEP, both processes being measuredat 15 °C. It is suggested that the high PEPC levels favourrapid, preferential flow of carbon to malate, by maintainingvery low PEP levels in the cytoplasm. PEPC changed in characteristicsduring the diurnal cycle. During the first few minutes afterisolation, extracts made during the first hours of the day,when malate was consumed, showed very low PEPC activity at pH7.0 but high activity at pH 8.0. The activity of PEPC at pH7.0 rose gradually during storage of the extracts at 0 °C,usually reaching the activity at pH 8.0 after about 30–50min. In contrast, extracts obtained during the first hours ofthe night, when malate was synthesized, showed high PEPC activityat both pH 7.0 and 8–0 within 30–50 s after extraction.The results indicate that PEPC of M. crystallinum, performingdistinct CAM, may exist in two states. One state would favourrapid malate synthesis and transport to the vacuoles and wouldfunction during the night. The second state, with little activitybelow pH 7.5, would occur during the day, thus preventing complicationsof continued synthesis of malate while it is converted to carbohydrates.  相似文献   

2.
Acetylcholinesterase (AChE) activity was determined at varied pH values between 6 and 11 in rat homogenated diaphragm and in eel E. electricus soluble AChE, in the presence or absence of 115 mM NaCl or LiCl. It was observed that by using homogenated diaphragm Li+ stimulated AChE at physiological pH (7-7.4). In control (no cations) a pH "optimum" of 8.6-9 was found, while in presence of NaCl or LiCl "optima" of 9.5 and 10.2 were observed respectively. At optimum pH, AChE activity was about 2 times higher with NaCl, while with LiCl 5 times higher than the control. Preincubation of the enzyme or the homogenate in cations presence at pH 5.5 or pH 12.8 had no effect on the activity, when it was measured at pH "optima". However, without cations only 76% of the activity in optimum pH after preincubation at pH 5.5 was found. These results suggest that: (a) Li+ may neutralize negative charges of AChE more successfully than Na+, resulting in better enzyme activation and stabilization; (b) a possible enzyme desensitization induced by pH changes can be avoided by increasing Na+ concentrations and especially Li+.  相似文献   

3.
Ascorbic acid 2-sulphate has a stability in acid comparable to that of phenyl sulphate and is rather more acid-labile than simple carbohydrate sulphates. At its optimum pH of 4.8 sulphatase A(aryl-sulphate sulphohydrolase EC 3.1.6.1.) hydrolyses ascorbic acid sulphate with a specific activity of 90 mumol/mg per min (150 mumol/mg per min with nitrocatechol sulphate at pH 5.6). At pH 4.8 the kinetics are non-Michaelis. At pH 5.6 Michaelis kinetics are obeyed and Km 12 21 mM ascorbic acid 2-sulphate. K2SO4 is a competitive inhibitor with a Ki of 0.2 and 0.6 mM at pH 4.8 and 5.6, respectively. Sulphatase A is converted into a substrate-modified form during its hydrolysis of ascorbic acid sulphate. Sulphatase B also hydrolyses ascorbic acid 2-sulphate. At pH 4.8 and in the presence of 0.15 M NaCl the specific activity is 0.92 mumol/mg per min (90 mumol/mg per min for nitrocatechol sulphate at pH 5.6). In the absence of NaCl the activity is greatly decreased. Km is 8 mM. K2SO4 is a competitive inhibitor with a Ki of 0.1 mM. Ascorbic acid is not hydrolysed at a detectable rate by the arylsulphatases of the mollusc Dicathais orbita or of Aerobacter aerogenes.?  相似文献   

4.
When chromatin from Novikoff hepatoma ascites cells was dissociated in 3 M NaCl – 7 M urea either at pH 6 or 8, degradation of chromosomal proteins was observed in two-dimensional gel electrophoretic patterns. This degradation was not prevented by 50 mM NaHSO3 but was prevented by 1 mM PMSF (phenylmethylsulfonyl fluoride). Reconstitution of the chromatin components dissociated in 3 M NaCl – 7 M ure ? 0.05 M sodium acetate (pH 6.0) containing 1 mM PMSF resulted in reassociation of DNA, histones and the major nonhistone proteins (B24, B26, B33, BE, BJ, C1, C6, CG, CH, CM, C14, CP, C18, CR, CS and C25). Two-dimensional gel electrophoresis showed that although the proportion of the nonhistone proteins to histones was lower in reconstituted than in native chromatin, the template activity of the reconstituted chromatin was similar to that of native chromatin.  相似文献   

5.
6.
An endonuclease from Xanthomonas oryzae pathovar oryzae KACC 10331, XorII, was recombinantly produced in Escherichia coli using a T7 system. XorII was purified using a combination of ion exchange and immobilized metal affinity chromatography (IMAC). An optimized washing protocol was carried out on an IMAC in order to obtain a high purity product. The final amount of purified XorII was approximately 2.5 mg/L of LB medium. The purified recombinant XorII was functional and showed the same cleavage pattern as PvuI. The enzyme activity tested the highest at 25 degrees in 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, and 1 mM dithiothreitol at a pH of 7.9.  相似文献   

7.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

8.
Lee SG  Goo JH  Kim HG  Oh JI  Kim YM  Kim SW 《Biotechnology letters》2004,26(11):947-950
Methylosinus trichosporium OB3b oxidized methane to methanol in the presence of a high concentration of Cu2+. Further oxidation of methanol to formaldehyde was prevented by adding 200 mM NaCl which acted as a methanol dehydrogenase H inhibitor. The bacterium, 0.6 mg dry cell ml(-1), in methane/air (1:4, v/v) at 25 degrees C in 12.9 mM phosphate buffer (pH 7) containing 20 mM sodium formate and 200 mM NaCl accumulated 7.7 mM methanol over 36 h.  相似文献   

9.
When subjected to the stress of growth in a relatively low-salt environment (1.25 M NaCl), the halophilic bacterium Halobacterium halobium induces a catalase. The protein has been purified to electrophoretic homogeneity and has an M(r) of 240,000 and a subunit size of approximately 62,000. The enzyme is active over a broad pH range of 6.5 to 10.0, with a peak in activity at pH 7.0. It has an isoelectric point of 4.0. This catalse, which is not readily reduced by dithionite, shows a Soret peak at 406 nm. Cyanide and azide inhibit the enzyme at micromolar concentrations, whereas maleimide is without effect. The addition of 20 mM 3-amino-1,2,4-triazole results in a 33% inhibition in enzymatic activity. The tetrameric protein binds NADP in a 1:1 ratio but does not peroxidize NADPH, NADH, or ascorbate. Although the enzymatic activity is maximal when assayed in a 50 mM potassium phosphate buffer with no NaCl, prolonged incubation in a buffer lacking NaCl results in inactive enzyme. Moreover, purification must be performed in the presence of 2 M NaCl. Equally as effective in retaining enzymatic function are NaCl, LiCl, KCl, CsCl, and NH4Cl, whereas divalent salts such as MgCl2 and CaCl2 result in the immediate loss of activity. The catalase is stained by pararosaniline, which is indicative of a glycosidic linkage. The Km for H2O2 is 60 mM, with inhibition observed at concentrations in excess of 90 mM. Thus, the mesohalic catalase purified from H. halobium seems to be similar to other catalases, except for the salt requirements, but differs markedly from the constitutive halobacterial hydroperoxidase.  相似文献   

10.
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.  相似文献   

11.
Cilia of Tetrahymena thermophila possess adenylate kinase [ATP:AMP phosphotransferase, EC 2.7.4.3] activity. More than 95% of the total activity was recovered in the axonemal fraction when cilia were demembranated with 0.2% Nonidet P-40. There was no loss of the specific activity of adenylate kinase when axonemes were thoroughly washed with HMEK solution (10 mM HEPES, 5 mM MgCl2, 0.1 mM EDTA, and 0.1 M KCl, pH 7.4). These results suggest that adenylate kinase is tightly bound to axoneme. Solubilization of adenylate kinase was markedly increased when axonemes were incubated in HME buffer (10 mM HEPES, 1 mM MgCl2, 0.1 mM EDTA, pH 7.4) containing concentrations of NaCl (or KCl) exceeding 1 M. Therefore, routine isolation of adenylate kinase from axonemes involved pre-extracting axonemes with 0.5 M NaCl in HME buffer followed by extraction in HME buffer containing 1.5 M NaCl. Native-gel electrophoresis of the high salt extract revealed two protein bands (band I and band III). An active staining for adenylate kinase showed a single active band corresponding to the position of band III. Two-dimensional gel electrophoresis using native-gel electrophoresis in the first dimension and SDS-PAGE in the second dimension suggests that band III protein contains at least nine polypeptides ranging from 21 to 110 kDa.  相似文献   

12.
A hemagglutinin, with a molecular weight of 30,000 and expressing hemagglutinating activity which could not be inhibited by simple sugars and glycoproteins, was isolated from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. The protein was adsorbed on CM-Sepharose even in 20 mM ammonium acetate (pH 5.5) containing 1 M NaCl and was desorbed by 20 mM ammonium bicarbonate (pH 9). The hemagglutinating activity was subsequently adsorbed on Mono S in 20 mM ammonium acetate (pH 5.5) and was desorbed by a linear gradient of 0.2-0.5 M NaCl in ammonium acetate buffer. The hemagglutinin exhibited a novel N-terminal sequence not found in any lectin and hemagglutinin reported so far. It was devoid of antifungal activity.  相似文献   

13.
The effects of salinity (NaCl) stress on growth, cytosolic Ca(2+) gradients and cytosolic pH homeostasis of root hairs of Arabidopsis thaliana are assessed here. Neither cytosolic Ca(2+) nor pH at the hair apex were significantly affected by 20 min exposure of up to 90 mM NaCl or of up to 5 mM extracellular Ca(2+). Exposure to increasing NaCl concentrations, up to 90 mM, for 2 d or 6 d reduced hair extension, and this inhibition was relieved by supplemental extracellular Ca(2+). Such extended salinity stress reduced the magnitude of the Ca(2+) gradient in the apical 12 microm of hairs at all NaCl concentrations tested (up to 90 mM), including NaCl concentrations that did not reduce hair extension. The magnitude of the tip-focused gradient was also reduced in root hairs of plants grown with low (0.5 mM) extracellular Ca(2+) when compared to those in 5 mM extracellular Ca(2+), regardless of the presence of NaCl. Up to 90 mM NaCl did not affect cytosolic pH of root hairs in any of the treatments. It is concluded that NaCl inhibition of root hair extension in the long term may operate via alterations in the tip-focused Ca(2+) gradient that regulates root hair growth. However, NaCl-induced alterations in this gradient do not always lead to detectably altered growth kinetics. Short-term signalling events in response to NaCl may operate by a means other than altering Ca(2+) at the root hair apex. Salinity stress in root hairs does not appear to be mediated by effects on cytosolic pH.  相似文献   

14.
A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.5, and the bound calpain is eluted with 150 mM NaCl, 50 mM Tris-HCl, pH 9.5, and 1 mM EDTA. These elution conditions do not affect the proteolytic activity of either mu- or m-calpain. It is most efficient to reduce the volume and to remove any proteolytic activity from crude extracts by using successive phenyl Sepharose and ion-exchange columns before loading onto the immunoaffinity column. The column purifies m-calpain more effectively than mu-calpain; m-calpain is greater than 90% pure after a single pass through this column, whereas mu-calpain can be purified to >70% purity. The epitope for the monoclonal antibody is between amino acids 92 and 104 (numbers for human calpain) in the 28-kDa subunit. Evidently, this area is shielded in the calpain molecule in a way that affects binding of the antibody to the native molecule.  相似文献   

15.
R O Scow 《Biochimie》1988,70(9):1251-1261
1. Effects of various substances on the activity of pancreatic lipase and on the release of lipolytic products into aqueous media were studied with droplets of trioleoylglycerol suspended from a membrane filter at the top of a flow-through chamber. The droplets were perifused for 7 min with a commercial preparation of pancreatic lipase in 0.15 M NaCl solution at pH 6.5 and then perifused for 60 min with lipase-free media, either 0.15 M NaCl at pH 6.5 or basal medium at pH 7.4 (70 mM sodium barbital) containing different additives. 2. About 6% of the trioleoylglycerol in droplets was hydrolyzed during the perifusion with lipase. Another 15% was hydrolyzed in 30 min, but none thereafter, when the droplets were perifused with 0.15 M NaCl alone. The rate of hydrolysis was doubled and prolonged when droplets were perifused with basal medium at pH 7.4. Lipolytic products formed at pH 7.4 were 62% oleic acid, 20% monooleoylglycerol and 18% dioleoylglycerol, yet only 4% of the lipolytic products were released into the perifusate. 3. Sodium taurodeoxycholate (TDC) (17 mM ) added to basal medium increased 18 x the amount of lipolytic products released into the perifusate but increased lipolysis only 13%. The molar ratio of oleic acid to monooleoylglycerol in the perifusate was 5.7 during the first 30 min and 4.0 during the last 30 min. 4. Ca2+ (3.3 mM) added to basal medium increased lipolysis 87% but did not affect the amount (4%) of lipolytic products released into the perifusing medium. 5. TDC and Ca2+ added to basal medium produced the largest increase in lipolysis, with 59% of trioleoylglycerol hydrolyzed in 15 min and 91% in 60 min. The amount of lipolytic products released into the perifusing medium, however, was not increased above that released into medium containing TDC alone. 6. Serum albumin (0.6 mM) and Ca2+ added to basal medium increased 14 x the amount of lipolytic products released into the perifusate without affecting the basal lipolytic rate. Albumin, however, suppressed by 40% the stimulatory effect of Ca2+ on pancreatic lipase activity.  相似文献   

16.
SslI, a type II restriction endonuclease, was purified from Streptococcus salivarius subsp. thermophilus strain BSN 45. SslI is an isoschizomer of BstNI. SslI activity was maximum at pH 8.8, 0 to 50 mM NaCl, 2 to 8 mM Mg2+, and 42 degrees C. Activity against phage DNA in vitro was demonstrated.  相似文献   

17.
SslI, a type II restriction endonuclease, was purified from Streptococcus salivarius subsp. thermophilus strain BSN 45. SslI is an isoschizomer of BstNI. SslI activity was maximum at pH 8.8, 0 to 50 mM NaCl, 2 to 8 mM Mg2+, and 42 degrees C. Activity against phage DNA in vitro was demonstrated.  相似文献   

18.
A fundamental understanding of the conformational behaviors of lysozyme during the process of adsorption and desorption has been studied using spectrophotometric techniques, and interpreted in terms of the secondary structures in this work. FTIR data show an increase in α-helix and β-sheet content when lysozyme interaction with magnetite nanoparticles (Fe(3)O(4) (PEG+CM-CTS) NPs) which indicates that the lysozyme would adopt a more compact conformation state. The mechanism of fluorescence quenching of lysozyme by magnetite nanoparticles is due to the formation of lysozyme-nanoparticles complex. High desorption of lysozyme from Fe(3)O(4) (PEG+CM-CTS) NPs were achieved using phosphate buffer solution (PBS) (20 mM, pH 5.0, 0.2 M NaCl), PBS (20 mM, pH 5.0, 0.5 M NaCl) and acetic acid (0.2 M, pH 4.0) as eluents. The alterations of lysozyme secondary structure on desorption from nanoparticles were confirmed by circular dichroism and fluorescence spectroscopy. Lysozymes desorbed by PBS (20mM, pH 5.0, 0.2M NaCl) and PBS (20mM, pH 5.0, 0.5M NaCl) retain high fraction of its native structure with negligible effect on its activity, and about 92.4% and 89.5% activity were retained upon desorption from nanoparticles, however, lysozyme desorbed by acetic acid (0.2 M, pH 4.0) solution showed significant conformational changes. The stability of NPs-conjugated protein and retention of higher activity may find useful applications in biotechnology ranging from enzyme immobilization to protein purification.  相似文献   

19.
Abstract

Dental enamel formation occurs extracellularly and establishment of an ordered enamel organic extracellular matrix (ECM) seems to be crucial for proper construction of the enamel mineral phase. Polarizing microscopy shows that the ordered supramolecular structure of the secretory stage enamel organic ECM exhibits strong birefringence. We reported earlier that this birefringence is lost in unfixed specimens, probably due to extensive proteolytic cleavage of enamel proteins. Therefore, we investigated the association between enamel proteinase activities by analyzing the effects of metallo- and serine proteinase inhibitors in situ on the birefringence of the secretory stage enamel organic ECM. Male rats were used in the present study. After sacrifice, distal 10 mm fragments of upper incisors were removed and immersed for 15 h under continuous shaking at 37°C in one of the following solutions: 1) 10 mM Tris, pH 8.0; 150 mM NaCl (negative control, n = 8); 2) 2% paraformaldehyde and 0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2 (positive control, n = 5); 3) 10 mM Tris, pH 8.0; 150 mM NaCl; 2 mM 1,10-phenanthroline (n = 9); 4) 10 mM Tris, pH 8.0; 150 mM NaCl; 2 mM phenylmethyl-sulfonyl fluoride (PMSF) (n = 8); 5) 10 mM Tris, pH 8.0; 150 mM NaCl; 2 mM 1,10-phenanthroline; 2 mM PMSF (n = 9). Samples then were immersed in fixative solution for 24 h and processed to obtain 5 μm thick longitudinal sections of the secretory stage enamel organic ECM. The sections were immersed in 80% glycerin for 30 min and analyzed by transmitted polarizing light microscopy. 1,10-Phenanthroline (inhibitor of metalloproteinases) and 1,10-phenanthroline + PMSF (inhibitor of serine proteinases) clearly prevented a decrease in the optical retardation of birefringence brightness from the tissue. PMSF alone promoted a slight preservation of the birefringence exhibited by the secretory stage enamel organic ECM. Rapid loss of birefringence in secretory stage enamel organic ECM that is not fixed immediately is caused by enamel proteinases and the activity of metalloproteinases seems to lead to preliminary degradation of the enamel organic ECM, which in turn facilitates subsequent serine proteinase activity.  相似文献   

20.
Emulsions of 0.1 wt % corn oil-in-water containing oil droplets coated by beta-lactoglobulin (0.009 wt % beta-Lg, 5 mM phosphate buffer, pH 7.0) were prepared in the absence and presence of sodium alginate (0 or 0.004 wt %). The pH (3-7) and ionic strength (0-250 mM NaCl) of these emulsions were adjusted, and the particle charge, particle size, and creaming stability were measured. Alginate adsorbed to the beta-Lg-coated droplets from pH 3 to 6, which was attributed to electrostatic attraction between the anionic polymer and cationic patches on the droplet surfaces. Droplets coated by beta-Lg-alginate had better stability to flocculation than those coated by beta-Lg alone, especially around the isoelectric point of the adsorbed proteins and at low ionic strengths (< 100 mM NaCl). At pH 5, alginate molecules desorbed from the droplet surfaces at high salt concentrations due to weakening of the electrostatic attraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号