首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

2.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

3.
Potato plants contain calystegines in leaves, stems, flowers, fruits and roots. Calystegines A3 and B2 are the main constituents. Highest concentrations were measured in sprouts emerging from the tubers. In 3 mm long sprouts, 3.3 mg total calystegines per g fresh mass were detected. Dormant tubers directly after harvest contain less calystegines in all parts than sprouting tubers. Flowers and young leaves are the aerial plant tissues with the highest calystegine concentration, i.e. 150 μg total calystegines per g fresh mass. Calystegine levels did not rise when sprouts were wounded. Tropinone application to sprouts and aerial tissues lead to an accumulation of pseudotropine and not to tropine. That indicates that stereospecific tropinone reduction is active in potato.  相似文献   

4.
Transgenic potato ( Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene ( SnRK1 ) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%−167% compared with that in the wild-type. Glucose levels were decreased, at 17%−56% of the levels of the wild-type, and the starch content showed an increase of 23%−30%. Sucrose and fructose levels in the tubers of the transgenic plants did not show a significant change. Northern analyses of genes encoding sucrose synthase and ADP-glucose pyrophosphorylase, two key enzymes involved in the biosynthetic pathway from sucrose to starch, showed that the expression of both was increased in tubers of the transgenic lines compared with the wild-type. In contrast, the expression of genes encoding two other enzymes of carbohydrate metabolism, α-amylase and sucrose phosphate synthase, showed no change. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was also increased, by approximately 20%–60% and three- to five-fold, respectively, whereas the activity of hexokinase was unchanged. The results are consistent with a role for SnRK1 in regulating carbon flux through the storage pathway to starch biosynthesis. They emphasize the importance of SnRK1 in the regulation of carbohydrate metabolism and resource partitioning, and indicate a specific role for SnRK1 in the control of starch accumulation in potato tubers.  相似文献   

5.
To investigate whether the route from sucrose to starch limits sink strength of potato tubers, we established an additional storage carbohydrate pool and analyzed allocation of imported assimilates to the different pools. Tuber specific expression of the fructan biosynthetic enzymes of globe artichoke resulted in accumulation of fructans to about 5% of the starch level, but did not increase tuber dry weight per plant. While partial repression of starch synthesis caused yield reduction in wild-type plants, it stimulated fructan accumulation, and yield losses were ameliorated in tubers expressing fructosyltransferases. However, a nearly complete block of the starch pathway by inhibition of sucrose synthase could not be compensated by the fructan pathway. Although fructan concentrations rose, yield reduction was even enhanced, probably because of a futile cycle of fructan synthesis and degradation by invertase, which is induced when sucrose synthase is knocked out. The data do not support a limitation of sink strength by enzyme activities of the starch pathway but point to an energy limitation of storage carbohydrate formation in potato tubers.  相似文献   

6.
Heterotrophic carbon metabolism has been demonstrated to be limited by oxygen availability in a variety of plant tissues, which in turn inevitably affects the adenylate status. To study the effect of altering adenylate energy metabolism, without changing the oxygen supply, we expressed a plastidially targeted ATP/ADP hydrolyzing phosphatase (apyrase) in tubers of growing potato (Solanum tuberosum) plants under the control of either inducible or constitutive promoters. Inducible apyrase expression in potato tubers, for a period of 24 h, resulted in a decrease in the ATP-content and the ATP-ADP ratio in the tubers. As revealed by metabolic profiling, this was accompanied by a decrease in the intermediates of sucrose to starch conversion and several plastidially synthesized amino acids, indicating a general depression of tuber metabolism. Constitutive tuber-specific apyrase expression did not lead to a reduction of ATP, but rather a decrease in ADP and an increase in AMP levels. Starch accumulation was strongly inhibited and shifted to the production of amylopectin instead of amylose in these tubers. Furthermore, the levels of almost all amino acids were decreased, although soluble sugars and hexose-Ps were highly abundant. Respiration was elevated in the constitutively expressing lines indicating a compensation for the dramatic increase in ATP hydrolysis. The increase in respiration did not affect the internal oxygen tensions in the tubers. However, the tubers developed a ginger-like phenotype having an elevated surface-volume ratio and a reduced mass per tuber. Decreased posttranslational redox activation of ADP-glucose pyrophosphorylase and a shift in the ratio of soluble starch synthase activity to granule-bound starch synthase activity were found to be partially responsible for the alterations in starch structure and abundance. The activity of alcohol dehydrogenase was decreased and pyruvate decarboxylase was induced, but this was neither reflected by an increase in fermentation products nor in the cellular redox state, indicating that fermentation was not yet induced in the transgenic lines. When taken together the combined results of these studies allow the identification of both short- and long-term adaptation of plant metabolism and development to direct changes in the adenylate status.  相似文献   

7.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

8.
A simple method of growing plants in agar was exploited to investigate the effect of long-term nitrogen (N) and phosphorus (P) deficiencies on respiratory metabolism and growth in shoots and roots of Nicotiana tabacum seedlings, and their interaction with exogenously supplied sucrose. Levels of hexose phosphates and 3-phosphoglyceric acid (3-PGA) were low in P-deficient shoots and roots and high in N-deficient shoots and roots. The ratio of hexose phosphates to 3-PGA and levels of fructose-2,6-bisphosphate were high in P-deficient plants and low in N-deficient plants. These data reflect differences in the way metabolism was perturbed, yet both deficiencies were associated with increased root growth relative to shoot growth, starch accumulation in the shoots, and soluble carbohydrate accumulation, especially hexoses, in the roots. Enzymes for sucrose degradation (sucrose synthase, acid and alkaline invertase) and glycolysis (phosphofructokinase, pyrophosphate-dependent phospho-fructokinase and pyruvate kinase) remained unaltered or declined in the shoots and roots. The accumulation of hexoses in roots of N- and P-deficient plants may result from maintenance of high invertase activities relative to sucrose synthase and glycolytic enzymes in the roots. The possibility that hexose accumulation may drive preferential root growth osmotically in N and P deficiencies is discussed. The addition of sucrose to roots to further investigate the interaction of carbohydrates with growth and allocation in low N and low P produced clear effects even though endogenous levels of soluble carbohydrate were already high in the nutrient-deficient plants. In complete nutrition, growth was stimulated, protein content particularly of the roots was increased and there was a preferential increase in activity of sucrose synthase in roots. At low P, enzyme activities in roots were increased, including sucrose synthase, and protein content increased, particularly in the roots, but there was no increase in growth. In N-deficient plants, exogenous sucrose led to decreased protein, Rubisco and chlorophyll content in shoots, in contrast to the other conditions, and a higher protein content and a general increase of catabolic enzyme activities and growth in the roots.  相似文献   

9.
Calystegines are nortropane alkaloids bearing between three and five hydroxyl groups in various positions. [15N]Tropinone was administered to root cultures of Calystegia sepium and the incorporation into calystegines was followed. Increase of label in calystegines was measured by one-dimensional 15N NMR and inverse-detected 2D NMR techniques. The results show that tropinone and pseudotropine are metabolites in the biosynthetic pathway of calystegines. The velocity of calystegine accumulation was followed kinetically by transfer of root cultures from 15N-enriched medium to 14N-medium and analysis by GC-MS. A constant calystegine formation with no interference by excretion or degradation was observed. A biosynthetic rate for individual calystegines at each time point was calculated, the maximum was 0.4 mg/day/g of biomass. This allowed the velocity of individual biosynthetic steps to be estimated.  相似文献   

10.
11.
Tuber formation and carbohydrate metabolism in potatoes were studied using transgenic potato plants carrying the Agrobacterium tumefaciens ipt gene, involved in cytokinin biosynthesis. Three independent transformants, viz. clones 1, 11 and 13, whose cytokinin and auxin content had previously been shown to be different from each other and from the wild-type, were analysed in vitro. Clones 11 and 13 showed a higher ability to form stolons and tubers, as evident from: (1) stolon development in whole plants grown under non-inductive conditions, (2) total number and weight of tubers formed by cuttings of this clone in darkness, (3) tubers appeared earlier than tubers of wild-type plants and at a lower sucrose concentration in the medium. Clone 1 did not form stolons or tubers under any conditions tested, but rather formed short shoots. A series of metabolic changes, known to be characteristic for tubers, were analysed in leaves, stems and developing buds. It was found that the short type of shoots, formed by clone 1, had metabolic characteristics very similar to tubers formed in wild-type or clones 11 and 13, including glucose, fructose, sucrose, and starch levels, and activities of invertase, sucrose synthase and fructokinase. It is concluded that the regulation of the stolon swelling and of carbohydrate metabolism, normally occurring simultaneously, can be uncoupled, and are thus, at least partly independent phenomena. The present data obtained with a high-cytokinin line indicate that cytokinins (probably in concert with auxins) might be mainly involved in the regulation of tuber morphology.  相似文献   

12.
Elucidating the role of viral genes in transgenic plants revealed that the movement protein (MP) from tobacco mosaic virus is responsible for altered carbohydrate allocation in tobacco and potato plants. To study whether this is a general feature of viral MPs, the movement protein MP17 of potato leafroll virus (PLRV), a phloem-restricted luteovirus, was constitutively expressed in tobacco plants. Transgenic lines were strongly reduced in height and developed bleached and sometimes even necrotic areas on their source leaves. Levels of soluble sugars and starch were significantly increased in source leaves. Yet, in leaf laminae the hexose—phosphate content was unaltered and ATP reduced to only a small extent, indicating that these leaves were able to maintain homeostatic conditions by compartmentalization of soluble sugars, probably in the vacuole. On the contrary, midribs contained lower levels of soluble sugars, ATP, hexose—phosphates and UDP-glucose supporting the concept of limited uptake and catabolism of sucrose in the phloem. The accumulation of carbohydrates led to a decreased photosynthetic capacity and carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) probably owing to decreased expression of photosynthetic proteins. In parallel, levels of pathogenesis-related proteins were elevated which may be the reason for the obtained limited resistance against the unrelated potato virus Y (PVY)N in the transgenic tobacco plants. Ultrathin sections of affected leaves harvested from 2-week-old plants revealed plasmodesmal alterations in the phloem tissue while plasmodesmata between mesophyll cells were indistinguishable from wild-type. These data favour the phloem tissue to be the primary site of PLRV MP17 action in altering carbohydrate metabolism.  相似文献   

13.
Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.  相似文献   

14.
Carbohydrate metabolism in growing rice seedlings under arsenic toxicity   总被引:7,自引:0,他引:7  
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity.  相似文献   

15.
Chlorocholine chloride (CCC) was sprayed on a potato crop 25 days after sowing (DAS) at 5 day intervals for a total of 7 sprays. Activity of sucrose synthase (SS) in the sucrose cleavage direction was many fold higher than that of acid invertase in all the tissues. The activity of alkaline invertase was negligible. A sharp decline in the starch content of stolons of the CCC-sprayed crop was observed between 60 DAS and 70 DAS. This could divert the carbon towards tubers and thus enhancing its availability for starch synthesis. The CCC-treated crop, in general, had higher SS (cleavage) activity in stem, stolons and tubers. A higher sucrose content in the stem of the CCC-treated crop could be due to the high sucrose phosphate synthase (SPS) activity observed in this plant part. In tubers of CCC-treated crops a higher SS (cleavage) activity along with a high sucrose content in tubers during the active tuber filling stage could lead to better availability of UDP-glucose for its conversion to glucose-1-phosphate, which could enter into the amyloplast leading to higher starch content. High SPS activity in tubers of CCC-treated plants ensures that reducing sugars formed are reconverted efficiently to sucrose. The efficiency of developing tubers from CCC-sprayed plants to convert 14C sucrose fed through stolons into starch was about 2.5 times more than in the control.  相似文献   

16.
Storage of potato tubers at low temperatures leads to the accumulation of glucose and fructose in a process called 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4 degrees C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four- to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6(F)-phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.  相似文献   

17.
The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-14C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was −0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato. Received: 24 February 1999 / Accepted: 8 April 1999  相似文献   

18.
19.
The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknown. One striking difference between the invertase and Suc synthase mediated cleavage of Suc is the direct involvement of inorganic pyrophosphate (PPi) in the latter case. There is presently no convincing explanation of how the PPi required to support this process is generated in potato (Solanum tuberosum) tubers. The major site of PPi production in a maturing potato tubers is likely to be the reaction catalyzed by ADP-glucose pyrophosphorylase, the first committed step of starch biosynthesis in amyloplasts. We present data based on the analysis of the PPi levels in various transgenic plants altered in starch and Suc metabolism that support the hypothesis that PPi produced in the plastid is used to support cytosolic Suc breakdown and that PPi is an important coordinator of cytosolic and plastidial metabolism in potato tubers.  相似文献   

20.
Metabolite levels and carbohydrates were investigated in the leaves of tobacco (Nicotiana tabacum L.) and leaves and tubers of potato (Solanum tuberosum L.) plants which had been transformed with pyrophosphatase from Escherichia coli. In tobacco the leaves contained two- to threefold less pyrophosphate than controls and showed a large increase in UDP-glucose, relative to hexose phosphate. There was a large accumulation of sucrose, hexoses and starch, but the soluble sugars increased more than starch. Growth of the stem and roots was inhibited and starch, sucrose and hexoses accumulated. In potato, the leaves contained two- to threefold less pyrophosphate and an increased UDP-glucose/ hexose-phosphate ratio. Sucrose increased and starch decreased. The plants produced a larger number of smaller tubers which contained more sucrose and less starch. The tubers contained threefold higher UDP-glucose, threefold lower hexose-phosphates, glycerate-3-phosphate and phosphoenolpyruvate, and up to sixfold more fructose-2,6-bisphosphatase than the wild-type tubers. It is concluded that removal of pyrophosphate from the cytosol inhibits plant growth. It is discussed how these results provide evidence that sucrose mobilisation via sucrose synthase provides one key site at which pyrophosphate is needed for plant growth, but is certainly not the only site at which pyrophosphate plays a crucial role.Abbreviations Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose 6-phosphate - FW fresh weight - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - 3PGA glycerate-3-phosphate - PFK phosphofructokinase - PFP pyrophosphate: fructose-6-phosphate phosphotransferase - Pi inorganic phosphate - PPi inorganic pyrophosphate - UDPGlc UDP-glucose This research was supported by the Deutsche Forschungsgemein-Schaft (SFB 137) and Sandoz AG (T.J., M.H., M.S.) and by the Bundesminister für Forschung und Technologie (U.S., L.W.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号