首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The isolation and characterization of three new HMAbs within domain A for a total of six provide support for this model. All six domain A HMAbs do not neutralize HCV retroviral pseudotype particle (HCVpp) infection on Huh-7 cells, and all six HMAbs have similar binding affinity and maximum binding, B(max), a relative indicator of epitope density, as other neutralizing HMAbs, suggesting that neutralization is epitope specific and not by binding to any surface epitope. The dose-dependent neutralizing activity of CBH-7, an HMAb to a domain C epitope in spatial proximity to domain A, and of CBH-5, a domain B HMAb to a more distant epitope, were tested in the presence and absence of each domain A HMAb. No enhancement or reduction in CBH-7 or CBH-5 neutralizing activity was observed, indicating that the potential induction of nonneutralizing antibodies should not be a central issue for HCV vaccine design. To assess whether domain A is involved in the structural changes as part of a pH-dependent virus envelope fusion process, changes in antibody binding patterns to normal pH and acid pH-treated HCVpp were measured. Antibody binding affinity of HMAbs to HCVpp was not affected by low pH. However, the B(max) values for low-pH-treated HCVpp with antibodies to domain A increased 46%, for domain C (CBH-7) they increased 23%, and for domain B (CBH-5) there was a decrease of 12%. Collectively, the organization and function of HCV E2 antigenic domains are roughly analogous to the large envelope glycoprotein E organizational structure for other flaviviruses with three distinct structural and functional domains.  相似文献   

2.
The intrinsic variability of hepatitis C virus (HCV) envelope proteins E1 and E2 complicates the identification of protective antibodies. In an attempt to identify antibodies to E2 proteins from divergent HCV isolates, we produced HCV E2 recombinant proteins from individuals infected with HCV genotypes 1a, 1b, 2a, and 2b. These proteins were then used to characterize 10 human monoclonal antibodies (HMAbs) produced from peripheral B cells isolated from an individual infected with HCV genotype 1b. Nine of the antibodies recognize conformational epitopes within HCV E2. Six HMAbs identify epitopes shared among HCV genotypes 1a, 1b, 2a, and 2b. Six, including five broadly reactive HMAbs, could inhibit binding of HCV E2 of genotypes 1a, 1b, 2a, and 2b to human CD81 when E2 and the antibody were simultaneously exposed to CD81. Surprisingly, all of the antibodies that inhibited the binding of E2 to CD81 retained the ability to recognize preformed CD81-E2 complexes generated with some of the same recombinant E2 proteins. Two antibodies that did not recognize preformed complexes of HCV 1a E2 and CD81 also inhibited binding of HCV 1a virions to CD81. Thus, HCV-infected individuals can produce antibodies that recognize conserved conformational epitopes and inhibit the binding of HCV to CD81. The inhibition is mediated via antibody binding to epitopes outside of the CD81 binding site in E2, possibly by preventing conformational changes in E2 that are required for CD81 binding.  相似文献   

3.
Legionella pneumophila has a Dot/Icm type IV secretion system used to translocate a number of 'effector proteins' which subvert host cell functions. In this study, we identified 19 novel Dot/Icm substrate proteins using a systematic screening technique. A blast analysis revealed that one of the substrates, which we named LubX ( L egionella U - b o x protein), contains two domains that have a remarkable similarity to the U-box, a domain found in eukaryotic E3 ubiquitin ligases. The expression of LubX is induced upon infection, and most of the LubX produced was translocated into the host cells. LubX has ubiquitin ligase activity in conjunction with UbcH5a or UbcH5c E2 enzymes and mediates polyubiquitination of host Clk1 (Cdc2-like kinase 1). We demonstrate that one of the U-boxes (U-box 1) is critical to the ubiquitin ligation, and the other U-box (U-box 2) mediates interaction with Clk1. Thus, the two U-boxes of LubX have distinct functions, and U-box 2 plays a non-canonical role in substrate binding. Although we demonstrate that inhibition of Clk kinase results in a marked reduction of Legionella growth within mouse macrophages, the consequence of Clk1 ubiquitination is still being elucidated. Together, these data suggest that Clk1 is the target host molecule which Legionella modulates during infection.  相似文献   

4.
5.
构建丙型肝炎HCV包膜蛋白糖蛋白的E2基因原核表达载体,获得大量重组HCVE2蛋白,进行E2蛋白的抗原性及潜在保护作用研究。通过RT-PCR从HCVRNA阳性血清标本中扩增出975bp(383~708)E2基因片段,PCR产物经EcoR I和Sall I双酶切后连接到经同样酶切的PET-41a原核表达载体上,转化到大肠杆菌BL21(DE3)菌株,经Amp筛选,得到阳性重组质粒PET41a-HCVE2菌株,并以IPTG诱导蛋白表达,SDS-PAGE鉴定,表达产物经固定化金属配体亲和层析纯化,用ELLSA方法检测生物学活性。结果表明,构建的HCVE2包膜蛋白基因片段原核表达质粒所表达产物主要以包涵体形式存在,表达的融合蛋白与HCV阳性血清具有较好的反应原性。以HCVE2融合蛋白检测患者阳性血清具有良好的抗原性,有望能提高HCV抗体检测试剂盒的检出率。  相似文献   

6.
The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.  相似文献   

7.
Based on the predicted capacity to interact with membranes at the interface, we have found three regions in the ectodomain of the hepatitis C virus envelope glycoprotein E2 (430-449, 543-560 and 603-624) with the ability to destabilize membranes. Three peptides corresponding to the sequence of these regions have been synthesized and their interaction with liposomes have been characterized. The three peptides were able to insert deeply into the hydrophobic core of negatively charged phospholipids as stated by fluorescence depolarization of the probe 1,6-diphenyl-1,3,5-hexatriene. Peptides E2(430-449) and E2(603-624) were able to induce aggregation of phosphatidylglycerol vesicles in a concentration-dependent manner both at neutral and acidic pH while peptide E2(543-560) did not induce any increase of optical density at 360 nm in the concentration range studied. The three peptides induced lipid mixing and the release of the internal contents in a dose-dependent manner when acidic phospholipids were used. Fourier transformed infrared spectroscopy indicated that the peptides adopted mainly a beta-sheet conformation which is not modified by the presence of acidic phospholipids. Taken together, our results point out to the involvement of these three regions in the fusion mechanism of HCV at the plasma membrane level.  相似文献   

8.
Based on the predicted capacity to interact with membranes at the interface, we have found three regions in the ectodomain of the hepatitis C virus envelope glycoprotein E2 (430-449, 543-560 and 603-624) with the ability to destabilize membranes. Three peptides corresponding to the sequence of these regions have been synthesized and their interaction with liposomes have been characterized. The three peptides were able to insert deeply into the hydrophobic core of negatively charged phospholipids as stated by fluorescence depolarization of the probe 1,6-diphenyl-1,3,5-hexatriene. Peptides E2430-449 and E2603-624 were able to induce aggregation of phosphatidylglycerol vesicles in a concentration-dependent manner both at neutral and acidic pH while peptide E2543-560 did not induce any increase of optical density at 360 nm in the concentration range studied. The three peptides induced lipid mixing and the release of the internal contents in a dose-dependent manner when acidic phospholipids were used. Fourier transformed infrared spectroscopy indicated that the peptides adopted mainly a β-sheet conformation which is not modified by the presence of acidic phospholipids. Taken together, our results point out to the involvement of these three regions in the fusion mechanism of HCV at the plasma membrane level.  相似文献   

9.

Background

Hepatitis C virus (HCV) is one of the leading causes of viral hepatitis worldwide and its genotype 3a is predominant in vast areas of Pakistan.

Findings

The present study reports the first full sequence of HCV 3a isolate PK-1 from Pakistan. This nucleotide sequence was compared with six other HCV genotype 3a full length sequences from different regions of the world by using statistical methods of phylogenetic analysis.

Conclusion

The nucleotide difference of these seven sequences shows that HCV genotype 3a of phylogenetically distinct origin is circulating in Pakistan.  相似文献   

10.
11.
The hepatitis C virus (HCV) H strain polyprotein is cleaved to produce at least nine distinct products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. In this report, a series of C-terminal truncations and fusion with a human c-myc epitope tag allowed identification of a tenth HCV-encoded cleavage product, p7, which is located between the E2 and NS2 proteins. As determined by N-terminal sequence analysis, p7 begins with position 747 of the HCV H strain polyprotein. p7 is preceded by a hydrophobic sequence at the C terminus of E2 which may direct its translocation into the endoplasmic reticulum, allowing cleavage at the E2/p7 site by host signal peptidase. This hypothesis is supported by the observation that cleavage at the E2/p7 and p7/NS2 sites in cell-free translation studies was dependent upon the addition of microsomal membranes. However, unlike typical cotranslational signal peptidase cleavages, pulse-chase experiments indicate that cleavage at the E2/p7 site is incomplete, leading to the production of two E2-specific species, E2 and E2-p7. Possible roles of p7 and E2-p7 in the HCV life cycle are discussed.  相似文献   

12.
13.
Matto M  Rice CM  Aroeti B  Glenn JS 《Journal of virology》2004,78(21):12047-12053
A subpopulation of hepatitis C virus (HCV) core protein in cells harboring full-length HCV replicons is biochemically associated with detergent-resistant membranes (DRMs) in a manner similar to that of markers of classical lipid rafts. Core protein does not, however, colocalize in immunofluorescence studies with classical plasma membrane raft markers, such as caveolin-1 and the B subunit of cholera toxin, suggesting that core protein is bound to cytoplasmic raft microdomains distinct from caveolin-based rafts. Furthermore, while both the structural core protein and the nonstructural protein NS5A associate with membranes, they do not colocalize in the DRMs. Finally, the ability of core protein to localize to the DRMs did not require other elements of the HCV polyprotein. These results may have broad implications for the HCV life cycle and suggest that the HCV core may be a valuable probe for host cell biology.  相似文献   

14.
Monoclonal antibody D32.10 produced by immunizing mice with a hepatitis C virus (HCV)-enriched pellet obtained from plasmapheresis of a chronically HCV1b-infected patient binds HCV particles derived from serum of different HCV1a- and HCV1b-infected patients. Moreover, this monoclonal has been shown to recognize both HCV envelope proteins E1 and E2. In an attempt to provide novel insight into the membrane topology of HCV envelope glycoproteins E1 and E2, we localized the epitope recognized by D32.10 on the E1 and/or E2 sequence using Ph.D.-12 phage display peptide library technology. Mimotopes selected from the phage display dodecapeptide library by D32.10 shared partial similarities with 297RHWTTQGCNC306 of the HCV E1 glycoprotein and with both 613YRLWHYPCT621 and 480PDQRPYCWHYPPKPC494 of the HCV E2 glycoprotein. Immunoreactivity of D32.10 with overlapping peptides corresponding to these three HCV regions confirmed these localizations and suggested that the three regions identified are likely closely juxtaposed on the surface of serum-derived particles as predicted by the secondary model structure of HCV E2 derived from the tick-borne encephalitis virus E protein. This assertion was supported by the detection of specific antibodies directed against these three E1E2 regions in sera from HCV-infected patients.  相似文献   

15.
Antibody to the capsid (PORF2) protein of hepatitis E virus (HEV) is sufficient to confer immunity, but knowledge of B-cell epitopes in the intact capsid is limited. A panel of murine monoclonal antibodies (MAbs) was generated following immunization with recombinant ORF2.1 protein, representing the C-terminal 267 amino acids (aa) of the 660-aa capsid protein. Two MAbs reacted exclusively with the conformational ORF2.1 epitope (F. Li, J. Torresi, S. A. Locarnini, H. Zhuang, W. Zhu, X. Guo, and D. A. Anderson, J. Med. Virol. 52:289-300, 1997), while the remaining five demonstrated reactivity with epitopes in the regions aa 394 to 414, 414 to 434, and 434 to 457. The antigenic structures of both the ORF2.1 protein expressed in Escherichia coli and the virus-like particles (VLPs) expressed using the baculovirus system were examined by competitive enzyme-linked immunosorbent assays (ELISAs) using five of these MAbs and HEV patient sera. Despite the wide separation of epitopes within the primary sequence, all the MAbs demonstrated some degree of cross-inhibition with each other in ORF2. 1 and/or VLP ELISAs, suggesting a complex antigenic structure. MAbs specific for the conformational ORF2.1 epitope and a linear epitope within aa 434 to 457 blocked convalescent patient antibody reactivity against VLPs by approximately 60 and 35%, respectively, while MAbs against epitopes within aa 394 to 414 and 414 to 434 were unable to block patient serum reactivity. These results suggest that sequences spanning aa 394 to 457 of the capsid protein participate in the formation of strongly immunodominant epitopes on the surface of HEV particles which may be important in immunity to HEV infection.  相似文献   

16.
Oligomerization of viral envelope proteins is essential to control virus assembly and fusion. The transmembrane domains (TMDs) of hepatitis C virus envelope glycoproteins E1 and E2 have been shown to play multiple functions during the biogenesis of E1E2 heterodimer. This makes them very unique among known transmembrane sequences. In this report, we used alanine scanning insertion mutagenesis in the TMDs of E1 and E2 to examine their role in the assembly of E1E2 heterodimer. Alanine insertion within the center of the TMDs of E1 or E2 or in the N-terminal part of the TMD of E1 dramatically reduced heterodimerization, demonstrating the essential role played by these domains in the assembly of hepatitis C virus envelope glycoproteins. To better understand the alanine scanning data obtained for the TMD of E1 which contains GXXXG motifs, we analyzed by circular dichroism and nuclear magnetic resonance the three-dimensional structure of the E1-(350-370) peptide encompassing the N-terminal sequence of the TMD of E1 involved in heterodimerization. Alanine scanning results and the three-dimensional molecular model we obtained provide the first framework for a molecular level understanding of the mechanism of hepatitis C virus envelope glycoprotein heterodimerization.  相似文献   

17.
In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2 −/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2 −/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2 −/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.”  相似文献   

18.
Hepatitis C virus core protein: intriguing properties and functional relevance   总被引:21,自引:0,他引:21  
Hepatitis C virus (HCV) often causes a prolonged and persistent infection, and an association between hepatocellular carcinoma (HCC) and HCV infection has been noted. The pathogenesis of liver damage is at least in part related to virus-mediated factors. Understanding the molecular basis of pathogenesis is a major challenge in gaining insight into HCV-associated disease progression. Recent experimental evidence using HCV cloned genomic regions suggests that the core protein has numerous functional activities. These include its likely role in encapsidation of viral RNA, a regulatory effect on cellular and unrelated viral promoters, interactions with a number of cellular proteins, an modulatory role in programmed cell death or apoptosis under certain conditions, involvement in cell growth promotion and immortalization, induction of HCC in transgenic mice, and a possible immunoregulatory role. These intriguing properties suggest that the core protein, in concert with cellular factors, may contribute to pathogenesis during persistent HCV infection.  相似文献   

19.
Human Flt3 ligand can expand dendritic cells (DC) and enhance immunogenicity in mice. However, little is known about the effects of murine Flt3 ligand (mFlt3L) on mouse DC development and function. We constructed a vector to transiently overexpress mFlt3L in mice. After a single treatment, up to 44% of splenocytes became CD11c(+) and the total number of DC increased 100-fold. DC expansion effects lasted for >35 days. mFlt3L DC were both phenotypically and functionally distinct. They had increased expression of MHC and costimulatory molecules and expressed elevated levels of B220 and DEC205 but had minimal CD4 staining. mFlt3L DC also had a markedly altered cytokine profile, including lowered secretion of IL-6, IL-10, IFN-gamma, and TNF-alpha, but had a slightly increased capacity to stimulate T cells in vitro. However, in a variety of in vivo models, DC expanded by mFlt3L induced tolerogenic effects on T cells. Adoptive transfer of Ag-pulsed mFlt3L splenic DC to naive mice actually caused faster rates of tumor growth and induced minimal CTL compared with control DC. mFlt3L also failed to protect against tumors in which human Flt3 ligand was protective, but depletion of CD4(+) T cells restored tumor protection. Our findings 1) demonstrate that mFlt3L has distinct effects on DC development, 2) suggest an important role for mFlt3L in generating DC that have tolerogenic effects on T cells, and 3) may have application in immunotherapy in generating massive numbers of DC for an extended duration.  相似文献   

20.
Axin is a major scaffold protein, interacting with diverse molecules involved in a number of signaling pathways. Axin can undergo dimer/oligomerization via its DIX domain. Here we show that whereas deletion of the DIX domain at the C terminus rendered Axin incapable of forming dimer, a larger deletion of the C-terminal region restored the ability of Axin to form dimers. Detailed analyses revealed that Axin actually contains two separate domains (D and I) in addition to the DIX domain for homodimerization. The D, I, and DIX domains alone can form homodimers. Interestingly, D and I domains strongly interact with each other, suggesting that Axin can form an intramolecular structure through D and I interaction in the absence of DIX. We also found that DIX-DIX homodimeric interaction is weak but that point mutations in the DIX domain abolished Axin homodimerization. We propose a model to suggest that Axin forms homodimeric interactions through three domains, D, I, and DIX. More importantly, lack of DIX-DIX interaction caused by point mutations in the DIX domain or deletion causes Axin to form an intramolecular loop through the D and I domains, disallowing homodimer formation. Ccd1 interacts with Axin D domain yet fails to interact with AxinDeltaDIX, confirming that D is masked after D-I looping. The Axin mutants that are defective in homodimer formation fail to activate JNK but have no effect on beta-catenin signaling. Our findings have thus provided a structural basis of conformational changes in Axin, which may underlie the diversity of Axin functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号