首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was hypothesized that heterologous anti-rat visceral yolk sac serum (AVYS) exerts its teratogenic effect by reducing the endocytosis of serum proteins by the visceral yolk sac (VYS), thus reducing the supply of amino acids to the embryo and VYS. To evaluate this hypothesis, we studied the effect of teratogenic AVYS on the endocytic function of the VYS and the ultrastructure of the VYS and parietal yolk sac (PYS). Rat conceptuses were exposed to a teratogenic dose of AVYS on the 10th day of gestation in vivo or in vitro. Control and AVYS-exposed specimens were collected 24-192 hr later and prepared for scanning and transmission electron microscopy (SEM and TEM, respectively) utilizing standard procedures. The Endocytic Index was calculated for the VYS utilizing standard procedures. Approximately 97% of the in vivo exposed and 94% of the in vitro exposed embryos were morphologically abnormal. Ultrastructural observations showed that exposure to AVYS in vivo or in vitro caused severe damage to the VYS endodermal epithelial cells with loss of cellular borders, reduction in the number and length of microvilli, and increased cellular inclusions; and some damage to PYS endodermal cells with increased blebbling and decreased cell number. Recovery was evident at 72 hr and complete by 96 hr. The Endocytic Index was significantly reduced in the VYS 24 and 48 hr after injecting AVYS into the pregnant rat but was not significantly different at 96 and 192 hr. Our results show that the AVYS antiserum damaged visceral endodermal epithelium experienced ultrastructural recovery with parallel functional recovery. These studies suggest that transient yolk sac placental ultrastructural damage and dysfunction was probably sufficient to cause irreversible damage to the developing embryo during early organogenesis. We conclude that the proximate effect of the AVYS was on the plasma membrane of the visceral endoderm and that decreased pinocytosis is a consequence of this effect.  相似文献   

2.
Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupted angiogenesis in mesoderm derivatives and altered epithelial characteristics in the visceral endoderm. Significant changes in both cell death and proliferation were confined to the YY1-expressing yolk sac mesoderm indicating that loss of YY1 in the visceral endoderm causes defects in the adjacent yolk sac mesoderm. Production of Vascular Endothelial Growth Factor A (VEGFA) by the visceral endoderm is essential for normal growth and development of the yolk sac vasculature. Reduced levels of VEGFA are observed in the cKO yolk sac, suggesting a cause for the angiogenesis defects. Ex vivo culture with exogenous VEGF not only rescued angiogenesis and apoptosis in the cKO yolk sac mesoderm, but also restored the epithelial defects observed in the cKO visceral endoderm. Intriguingly, blocking the activity of the mesoderm-localized VEGF receptor, FLK1, recapitulates both the mesoderm and visceral endoderm defects observed in the cKO yolk sac. Taken together, these results demonstrate that YY1 is responsible for maintaining VEGF in the developing visceral endoderm and that a VEGF-responsive paracrine signal, originating in the yolk sac mesoderm, is required to promote normal visceral endoderm development.  相似文献   

3.
The effects of 40, 50, and 60 mg/kg streptozotocin (SZ) on the body weights and the glucose concentration and the osmolarity of the serum of adult rats were determined. Serum prepared from these SZ-dosed rats was used in embryo culture experiments to investigate effects of diabetic serum on rat embryos during organogenesis. The diabetic serum resulting from each of the tested doses of SZ was teratogenic to 9.5-day rat explants (embryos and their membranes), causing a range of dysmorphic lesions including craniofacial defects, heart defects, and abnormalities of the branchial arches and the otic capsules. Explants cultured in serum prepared from rats dosed with 60 mg/kg SZ also showed abnormal morphology of both the visceral yolk sac and the embryonic blood cells in the yolk sac capillaries. The development of explants repeatedly transferred between control and diabetic serum indicated that the severity of the dysmorphic effect was dependent on the duration of exposure to diabetic serum. The alternation of sera did not in itself appear to be damaging to the embryos. Explants cultured in control serum, control serum with its glucose concentration increased to that of the diabetic serum, or diabetic serum all took up the same amount of glucose from their culture medium; 30% of the embryos from the diabetic serum were abnormal compared to only 4% from the control serum and the control serum plus glucose.  相似文献   

4.
Uptake and transfer of maternal transferrin by rat embryos during organogenesis in vitro was investigated using radiolabelled rat transferrin and rocket immunoelectrophoresis. Colloidal gold to which rat transferrin was adsorbed was used as an electron microscopical marker in order to follow the route taken by internalised transferrin across the visceral yolk sac. Culture of rat conceptuses from 9.5 to 11.5 days of gestation in rat or human sera resulted in the passage of rat or human transferrin from the culture medium into the extraembryonic coelom as determined by quantitative immunoelectrophoretic analysis of exo-coelomic fluid. The concentration of human transferrin which was transferred to the exo-coelomic fluid of conceptuses cultured in whole human serum at 10.5 days and 11.5 days of gestation was similar to the concentration of rat transferrin in the fluid of conceptuses cultured in rat serum which had been diluted with Hanks' saline to 50% in order to match the levels of transferrin found in human serum. Growth of rat embryos in 50% rat serum was identical to embryonic growth in 100% rat serum. Uptake of radiolabelled rat transferrin by the visceral yolk sac at 11.5 days of gestation, following culture for 60 min in radiolabelled medium, was much greater than nonspecific uptake of radiolabelled bovine serum albumin. Accumulation of radiolabelled transferrin by the embryo was reduced by the inclusion of unlabelled transferrin into the culture medium. Uptake of transferrin adsorbed 18 nm gold particles was mediated by attachment to coated pits on the apical cell surface of the extraembryonic endoderm. Transferrin-adsorbed gold colloid was internalised via coated vesicles and found in cisternal structures of the peripheral and juxtanuclear areas, as well as in smooth and coated vesicles deep within the cell. The intercellular presence of gold particles in the endodermal layer of the visceral yolk sac and their presence in the mesoderm after 60 min of incubation suggested that passage of transferrin was rapid and mediated by vesicular evagination from the extraembryonic endoderm. These findings suggest that maternal transferrin is the primary source of transferrin for the early rat embryo and its passage to the exo-coelom and embryo is mediated by specific receptors on the apical surface of the extraembryonic endoderm.  相似文献   

5.
Cell lineages of the primitive endoderm and the visceral endoderm of mouse embryos were examined by culturing whole embryos in vitro. The primitive endoderm and visceral endoderm cells could be labelled by incubation of embryos in a medium containing horse radish peroxidase (HRP). HRP localization was chased throughout the culture period. The results show that the visceral endoderm derives from the primitive endoderm, and the visceral endoderm forms only the extra-embryonic endoderm (yolk sac endoderm) of the conceptus. The definitive endoderm which is probably derived from the head process, newly appears on the ventral surface of the embryo.  相似文献   

6.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
E D Adamson  S E Ayers 《Cell》1979,16(4):953-965
The location of type IV (basement membrane)collagen in early post-implantation mouse embryos was examined by immunoperoxidase reactions using a specific immunoglobulin raised against mouse lens capsule collagen. Reaction was positive in the earliest embryos studied--on the fifth day of gestation (the day of detection of the copulation plug is the first day). It was found only in the primitive endoderm adjacent to the blastocoelic cavity. Subsequently in development, strong staining reactions were found in the parietal endoderm, Reichert's membrane and an acellular layer which separates the visceral endoderm of the egg cylinder from the ectoderm. In tenth to eighteenth day visceral yolk sacs, the mesodermal portion was stained, which is consistent with the presence of basement membranes around blood vessels. The endodermal portion of the visceral yolk sac did not react, while small amounts were found in the amnion. By incubation of various embryonic tissues with tritiated amino acids, purification of the biosynthesized secreted collagens and their partial characterization, the differential expression of several collagen genes was detected. Identification of collagen types was made by: reaction with specific antibodies to type I and IV collagens; electrophoretic mobility; sensitivity to reduction and to collagenase; analysis of the proportions of 3-hydroxyproline, 4-hydroxyproline and hydroxylysine; and CNBr peptides. In agreement with the data of Minor et al. (1976a) for the rat, mouse parietal endoderm synthesizes large amounts of type IV collagen. In contrast to their findings, however, the 165,000 molecular weight polypeptide is not converted to one of 100,000 after reduction, alkylation and repepsinization (Dehm and Kefalides, 1978). The endoderm of the visceral yolk sac was shown to be synthesizing primarily type I collagen, while the mesoderm layer of this membrane synthesized both type I and IV collagens. Little or no type IV collagen synthesis was detected in the endoderm of the visceral yolk sac. If it is correct that the visceral endoderm of the early embryo makes a major contribution to the formation of the endoderm portion of the visceral yolk sac, then it is clear that a switch in collagen gene expression must occur as it does so.  相似文献   

8.
Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegf(lo). Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing 'Vegf wild-type' visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the 'Vegf wild-type' yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.  相似文献   

9.
10.
It was shown that the omphaloid placenta and, first of all, visceral wall of yolk sac is the site of primary synthesis of ceruloplasmin (CP), whereas the activation of CP synthesis in the liver cells is secondary and is revealed from the 12th day of embryo-genesis. The CP synthesis in the yolk sac cells proved by selective CP localization in the cells of the yolk sac visceral wall and, first of all, in the cells of visceral endoderm on sections stained by the method of indirect immunofluorescence and using the reaction of soluble peroxidase-antiperoxidase complex. A specific CP-mRNA has been revealed in the yolk sac cells which is actively translated in the polyribosomes isolated from the yolk sac and in the cell-free translation system from the rabbit reticulocytes. on the 14th day of embryogenesis CP amounts to ca. 4% of all polypeptides secreted by the yolk sac cells. As the embryogenesis proceeds, the relative rate of CP synthesis progressively decreases in the yolk sac and increases in the liver cells. CP synthesized by the yolk sac cells has a molecular mass of ca. 122 kD. Possible causes of differences between the "embryonic" and "adult" rat CPs are discussed. A suggestion has been put forward that the time of activation of CP synthesis coincides with the yolk sac formation (8-9th days of embryogenesis) and the cells of visceral endoderm are the site of primary expression of the CP gene.  相似文献   

11.
12.
Freeze-drying and fluorescence microscopy techniques were combined to create a sensitive method for the visualization of the teratogenic dye, Trypan blue, in both protein-bound and free forms. In the development and initial application of this method, visceral yolk sacs of several gestational ages as well as normal appearing, 12-day embryos obtained from dye-injected rats were utilized. Observations on paraffinized sections of the yolk sac placentae demonstrated that only the protein-bound form of the dye exists in the yolk sac cavity whereas both forms of the dye exist in supranuclear regions of cells of the visceral endoderm. Paraffin sections of the normal appearing, 12-day embryos displayed the protein-bound form of dye within lumina of mid- and hind-gut, and both forms of dye in the primitive mucosa of mid- and hind-gut. The advantages of the method are derived not only from the use of fluorescence microscopy but also from the avoidance of solvents that are employed in more routine microtechniques.  相似文献   

13.
The dynamics of ceruloplasmin content was studied by immunochemical methods in the postimplantation rat embryos and postnatal animals. Ten to twenty two day old embryos contained ceruloplasmin (CP) in yolk sac, serum, and amniotic fluid. The highest CP levels were found in yolk sac. CP concentration profiles were almost identical in the serum and amniotic fluid being the highest on the 12th day (0.26 mg%) and the lowest (0.04) on the 16th day of gestation. CP concentration in the serum increased rapidly up to 3.5 mg% from the 17th day of gestation till the term (22nd day) while remaining at a constant and rather low level in the amniotic fluid. Within 16-18 days after birth, CP concentration in the serum remained at the level of 11 +/- 0.3 mg%. Later on it gradually increased and attained plateau (46-48 mg%) by the time of sex maturity. The maternal serum CP does not penetrate, in the embryo, as can be inferred from the experiments with 125I-CP injected into pregnant rats. Differences in the CP degradation rate and modes were found between the embryos and postnatal rats. It is suggested that CP is initially synthesized by the yolk sac endoderm during organogenesis (10-16 days of gestation) and predominantly by the liver during the foetal period (17-22 days).  相似文献   

14.
A continuous cell line was established from an experimentally induced rat yolk sac carcinoma. In the early passages both visceral and parietal yolk sac carcinoma were present (designated L1). When the cell line was reestablished in culture after serial transplantations in rats, only parietal yolk sac carcinoma could be identified (designated L2). This cell line expresses parietal yolk sac endoderm characteristics in that it synthesizes basement membrane components, in particular, laminin, but also entactin, collagen IV, and heparan sulfate proteoglycan. In addition, a noncartilage chondrotin sulfate proteoglycan is synthesized. This rat yolk sac carcinoma cell line L2 will be a valuable model for the study of basement membrane components.  相似文献   

15.
16.
Summary Freeze-drying and fluorescence microscopy techniques were combined to create a sensitive method for the visualization of the teratogenic dye, Trypan blue, in both protein-bound and free forms. In the development and initial application of this method, visceral yolk sacs of several gestational ages as well as normal appearing, 12-day embryos obtained from dye-injected rats were utilized. Observations on paraffinized sections of the yolk sac placentae demonstrated that only the protein-bound form of the dye exists in the yolk sac cavity whereas both forms of the dye exist in supranuclear regions of cells of the visceral endoderm. Paraffin sections of the normal appearing, 12-day embryos displayed the protein-bound form of dye within lumina of mid- and hind-gut, and both forms of dye in the primitive mucosa of mid- and hind-gut. The advantages of the method are derived not only from the use of fluorescence microscopy but also from the avoidance of solvents that are employed in more routine microtechniques.Supported in part by the Oregon Heart Association and by the Medical Research Foundation of Oregon, grant 7513  相似文献   

17.
18.
Development Genes and Evolution - An antiserum was prepared in rabbit against rat visceral yolk sac endoderm. The initial injection was of a ConA-Sepharose purified fraction of endoderm, and...  相似文献   

19.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

20.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号