首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
糖化是一个重要的蛋白质修饰过程,可能影响治疗性蛋白药物(如单克隆抗体药物)的生物活性及分子稳定性。许多研究表明糖化血红蛋白水平升高与心血管疾病及动脉粥样硬化有着密切关系。人体的血浆蛋白,如白蛋白、球蛋白、纤维蛋白和胶原蛋白也可能被糖化,进而形成AGEs,蛋白药物的生产、储存以及药物在体内循环过程中都可能发生糖化反应。综述了治疗性抗体药物糖化的原因、分析方法,以及糖化对抗体药物生物学功能的影响,以期为临床抗体药物的开发、优化及贮存条件研究提供参考。  相似文献   

2.
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.  相似文献   

3.
Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.  相似文献   

4.
Glycation of proteins leading to formation of advanced glycation end products (AGEs) has been considered as one of the important causes of diabetic nephropathy. Therefore, in this study, glycated proteins were detected by anti-AGE antibodies from kidney of streptozotocin-induced diabetic rat showing nephropathic symptoms, by using two dimensional electrophoresis and western blot analysis. These glycated proteins were identified and characterized by using combination of peptide mass finger printing and tandem mass spectrometric approaches. Glycated proteins identified included proteins from metabolic pathways, oxidative stress, cell signaling, and transport. Several of the proteins modified by glycation were involved in glucose metabolism. The extent of glycation was higher in diabetes compared to control, in the glycated proteins that were common to both control and diabetic kidney. Two dimensional electrophoresis proteins profiling of glycated proteins suggest that four of the glycated proteins were significantly up regulated in diabetes.  相似文献   

5.
Nonenzymatically glycated proteins are preferentially transported across the glomerular filtration barrier, and the glomerular mesangium in diabetes is bathed with serum containing increased concentrations of glycated albumin. We investigated effects of glycated albumin on mesangial cells, which are involved in diabetic nephropathy. [3H]-thymidine incorporation was significantly inhibited when murine mesangial cells were grown in culture media containing human serum that had been nonenzymatically glycated by incubation for 4 days with 28 mM glucose. This inhibition was reversed when monoclonal antibodies that selectively react with Amadori products of glycated albumin were added to the culture media. Purified glycated albumin containing Amadori adducts of the glycation reaction induced significant inhibition of thymidine incorporation and stimulation of Type IV collagen secretion compared with cells cultured in the presence of purified nonglycated albumin. These changes were prevented when monoclonal antibodies specifically reactive with fructosyl-lysine epitopes in glycated albumin were added to the cultures. The antibodies had no effect on growth or collagen production in the presence of nonglycated albumin. The results provide the first evidence directly implicating Amadori adducts in glycated albumin in the pathogenesis of diabetic nephropathy, which is characterized by decreased cellularity in association with expansion of the mesangial matrix.  相似文献   

6.
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

7.
Glycated proteins/advanced glycation endproducts contribute to the development of diabetic complications but the precise pathway from glycated proteins to complications is still being delineated. The ezrin, radixin and moesin protein family is a new class of advanced glycation endproduct-binding protein and we hypothesize that advanced glycation endproducts mediate some of their detrimental effects leading to diabetic complications by inhibiting ezrin's actions. Our previous study revealed that glycated proteins bind to the N-terminal domain of ezrin (aa 1–324) and this study further defines the ezrin binding epitope. Binding of glycated albumin to recombinant N-ezrin deletion constructs (aa 1–280, 1–170 and 1–144) and glutathione-S-transferase-N-ezrin fusion proteins, (aa 200–324 and 270–324) was analysed using ligand and far Western blotting, and surface plasmon resonance. Glycated albumin binding was markedly reduced on removal of amino acids 280–324, while binding was preserved in the fusion proteins. A series of peptides based on residues 280–324 was synthesized and those containing residues 277–299 of ezrin bound maximally. Peptide binding to glycated albumin was glycation-specific. An ezrin peptide (aa 277–299) dose-dependently reversed the inhibitory effect of glycated albumin on ezrin (1–324) phosphorylation in vitro, suggesting that binding of advanced glycation endproducts to ezrin changes the conformation of the latter sufficiently to alter binding interactions distant from the advanced glycation endproduct-binding site. This may have consequences for subcellular ezrin localization and signalling pathways. Altogether, these studies provide important structural knowledge for developing peptide antagonists that may be therapeutically useful in preventing advanced glycation endproduct:ezrin interactions in diabetes.  相似文献   

8.
《MABS-AUSTIN》2013,5(4):1-13
Non-enzymatic glycation is a challenging post-translational modification to characterize due to the structural heterogeneity it generates in proteins. Glycation has become increasingly recognized as an important product quality attribute to monitor, particularly for the biotechnology sector, which produces recombinant proteins under conditions that are amenable to protein glycation. The elucidation of sites of glycation can be problematic using conventional collision-induced dissociation (CID)-based mass spectrometry because of the predominance of neutral loss ions. A method to characterize glycation using an IgG1 monoclonal antibody (mAb) as a model is reported here. The sugars present on this mAb were derivatized using sodium borohydride chemistry to stabilize the linkage and identified using CID-based MS2 mass spectrometry and spectral search engines. Quantification of specific glycation sites was then done using a targeted MS1 based approach, which allowed the identification of a glycation hot spot in the heavy chain complementarity-determining region 3 of the mAb. This targeted approach provided a path forward to developing a structural understanding of the propensity of sites to become glycated on mAbs. Through structural analysis we propose a model in which the number and 3-dimensional distances of carboxylic acid amino acyl residues create a favorable environment for glycation to occur.  相似文献   

9.
Solid-phase synthesis of glucose-derived Amadori peptides.   总被引:1,自引:0,他引:1  
Nonenzymatic glycosylation or glycation of amino groups in peptides and proteins by D-glucose is a universal reaction with important implications for the pathogenesis of many diseases including diabetes mellitus. Here a general approach is reported to synthesize site specifically glucose-derived N-glycated peptides. Therefore, model peptides H-AKASASFL-NH(2), H-AKASADFL-NH(2), H-ASKASKFL-NH(2), and H-AKDSASFL-NH(2) were synthesized on solid phase by Fmoc chemistry using Fmoc-Lys(4-methyltrityl)-OH in positions 2 or 3 to be glycated. After completion of the synthesis, the acid labile 4-methyltrityl-group was cleaved with 1% TFA in DCM and the free amino groups were glycated by the Lobry de Bruyn reaction using 2,3:4,5-di-O-isopropylidene-aldehydo-beta-D-arabino-hexos-2-ulo-2,6-pyranose on solid phase. After TFA treatment, the crude peptides were obtained in high yields and purities above 80%. Minor by-products were well separated on reversed-phase HPLC.  相似文献   

10.
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1–5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.  相似文献   

11.
Electrospray ionization mass spectrometry (ESIMS) was used for relative quantification of glycated Cu-Zn superoxide dismutase (SOD-1) in human erythrocytes. SOD-1 samples were prepared from erythrocytes by removing hemoglobin using hemoglobind gel followed by ethanol and chloroform extraction. The reproducibility in measurement of the relative percentage of glycated protein was good, and the standard deviation of each measurement was 4.0%. From the mass spectral analysis of a mixture of commercial SOD-1 and in vitro partially glycated SOD-1 in several ratios, it was found that free and glycated SOD-1 have the same ionization efficiencies. The percentage of glycation on SOD-1 was measured in 30 individuals, including patients with diabetes mellitus. The glycation levels ranged from 4.5% to below the detection limit. The SOD-1 sample extracted from erythrocytes was fractionated by Glyco-Gel B chromatography, and the separated fractions were analyzed by MS. The mass spectra of absorbed fraction showed significant amounts of non-specific binding of non-glycated proteins to Glyco-Gel B.  相似文献   

12.
Amadori-modified proteins are bound by macrophages and monocytes via fructosyllysine-specific receptors. Detergent extracts from U937 cell membranes were used to purify the binding proteins by affinity purification on glycated polylysine coated magnetic beads followed by SDS-PAGE. Two proteins of 200 and 100[emsp4 ]kDa were isolated. MS-analysis of the 200[emsp4 ]kDa protein showed high homologies with cellular myosin heavy chain, type A. Both fructosyllysine specific binding proteins, cellular myosin heavy chain and nucleolin, are glycosylated.  相似文献   

13.
The effects of three dipeptides L-phenylalanyl-glybine, glycyl-L-phenylalanine,and aspartame (L-aspartyl-L-phenylalanine, methyl ester) as inhibitors of the ascorbic acid-induced modifications in lens proteins were studied. Their efficiency was compared to that of two known inhibitors--aminoguanidine and carnosine. The tested dipeptides diminished protein carbonyl content by 32-58% and most moderated the formation of chromophores, as measured by the absorbency at 325 nm of the glycated proteins. The appearance of non-tryptophan fluorescence (excitation 340 nm/emission 410 nm) was observed for proteins glycated with ascorbic acid. All of the dipeptides examined, as well as aminoguanidine, decreased this glycation-related fluorescence. The potential inhibitors prevented the intensive formation of very high molecular weight aggregates. A competitive mechanism of their inhibitory effect was proposed, based on the reactivity of individual substances toward ascorbic acid. These findings indicate that they have a potential for use as alternatives for aminoguanidine as an anti-glycation agent.  相似文献   

14.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron-transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.  相似文献   

15.
The posttranslational modification of proteins by sugars has been demonstrated in diabetes and classical galactosemia. In diabetes, the glycation process occurs as a result of d-glucose nonenzymatically reacting with proteins such as albumin and hemoglobin, used today as important tools to monitor the efficiency of dietary control and therapy during treatment of diabetes. In classical galactosemia, d-galactose contributes to the formation of glycated proteins as well, suggesting that, akin to diabetes with glucated proteins, the monitoring of galactated proteins may facilitate management of patients with galactosemia. The objectives of this study were (i) to galactate human serum albumin (HSA) in vitro; (ii) to determine, by a sodium borohydride-dependent mass peptide mapping method, the galactation sites in HSA; and (iii) to compare HSA’s galactation sites with the protein’s reported glucation sites. Treatment of galactated HSA with sodium borohydride stabilized the condensed sugars on the protein and yielded discrete fragmentation patterns by tandem mass spectrometry, allowing reliable identification of HSA’s galactation sites. Liquid chromatography/electrospray ionization/mass spectrometry, in combination with tandem mass spectrometry, revealed that the principal sites of galactation in HSA were the ε-amino groups of lysine residues 12, 233, 281/276, 414, and 525. Lysyl residues 12, 233, 276, and 525 were previously reported as privileged sites for the nonenzymatic binding of d-glucose with HSA.  相似文献   

16.
Diabetes is a complex metabolic disease and has chronic complications. It has been considered a serious public health problem. The aim of the current study was to evaluate skin glycated proteins through fluorescence and Raman techniques. One hundred subjects were invited to participate in the study. Six volunteers did not attend due to exclusion criteria or a change of mind about participating. Therefore, 94 volunteers were grouped according to age range (20‐80 years), health condition (nondiabetic, with insulin resistance [IR] and/or diabetic) and Fitzpatrick skin type (I‐VI). The fluorescence spectrometer and the portable Raman spectroscopy system were used to measure glycated proteins from the skin. There was elevated skin autofluorescence in healthy middle‐aged and elderly subjects, as well as in patients with IR and/or diabetes. Regarding Raman spectroscopy, changes in the skin hydration state, degradation of type I collagen and greater glycation were related for diabetes and chronological aging. Weak and positive correlation between the skin autofluorescence and the Raman peaks ratio (855/876) related to the glycated proteins was also found. Raman spectroscopy shows several bands for spectral analyses, complementing the fluorescence data. Therefore, this study contributes to understanding of the optical of human skin for noninvasive diabetes screening.   相似文献   

17.
Increased protein glycation has been mechanistically linked to accelerated vascular pathobiology in diabetes. To test the influence of protein modified by Amadori glucose adducts on vascular cell biology, we examined the effect of glycated albumin on replicative capacity and basement membrane collagen production by aortic endothelial cells in culture. Relative to carbohydrate-free albumin, which supported cell proliferation and Type IV collagen synthesis, glycated albumin significantly inhibited3H-thymidine incorporation and Type IV collagen production. The glycated albumin-induced effects were prevented by monoclonal antibodies (A717) that specifically react with Amadori-modified albumin, but not by IgG that was unreactive with glycated albumin. A717 had no effect on thymidine incorporation or collagen synthesis by cells cultured in the presence of nonglycated albumin. The findings indicate that the interaction of glycated albumin with endothelial cells, which have been shown to display dose-responsive, saturable receptors, limits cell replication and triggers maladaptive biosynthetic programs, which may contribute to degenerative macrovascular disease in diabetes.  相似文献   

18.
A novel glycation procedure, in vacuo glycation, was used to attach glucose covalently to the lysine residues of trypsin and chymotrypsin. Glycated trypsin and glycated chymotrypsin have greatly increased thermostability compared to the native enzymes. For example, glycated bovine trypsin, incubated at 50 degrees C and pH 8.0 for 3 h, retained more than 50% of its original activity whereas the native enzyme was inactivated under the same conditions. Similarly, after incubation at 50 degrees C and pH 8.0, glycated bovine chymotrypsin retained 45% of its original activity and the native enzyme was inactivated. Glycated porcine trypsin is exceptionally thermostable and could be used to digest native ribonuclease at 70 degrees C without the need for prior denaturation. The apparent increase in the thermal stability of the glycated proteins observed in activity measurements is also reflected by an increase in the T(m) values determined with differential scanning calorimetry (DSC) and circular dichroism (CD). The glycation does not alter the activity or specificity of these enzymes.  相似文献   

19.
Reducing sugars for example glucose, fructose, etc., and their phosphate derivatives non-enzymatically glycate biological macromolecules (e.g., proteins, DNA and lipids) and is related to the production of free radicals. Here we present a novel study, using differential scanning calorimetry (DSC) along with UV/Vis absorption and photon correlation spectroscopy (PCS), on normal and glycated human placenta DNA and have explored the antioxidant property of the naturally occurring polyhydroxy flavone quercetin (3,3',4',5,7-pentahydroxyflavone) in preventing the glycation. The decrease in the absorption intensity of DNA in presence of sugars clearly indicates the existence of sugar molecules between the two bases of a base pair in the duplex DNA molecule. Variations were perceptible in the PCS relaxation profiles of normal and glycated DNA. The melting temperature of placenta DNA was decreased when glycated suggesting a decrease in the structural stability of the double-stranded glycated DNA. Our DSC and PCS data showed, for the first time, that the dramatic changes in the structural properties of glycated DNA can be prevented to a significant extent by adding quercetin. This study provides valuable insights regarding the structure, function, and dynamics of normal and glycated DNA molecules, underlying the manifestation of free radical mediated diseases, and their prevention using therapeutically active naturally occurring flavonoid quercetin.  相似文献   

20.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this work, we report the first proteomics-based characterization of nonenzymatically glycated proteins in human plasma and erythrocyte membranes from individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Phenylboronate affinity chromatography was used to enrich glycated proteins and glycated tryptic peptides from both human plasma and erythrocyte membranes. The enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation-tandem mass spectrometry, resulting in the confident identification of 76 and 31 proteins from human plasma and erythrocyte membranes, respectively. Although most of the glycated proteins could be identified in samples from individuals with normal glucose tolerance, slightly higher numbers of glycated proteins and more glycation sites were identified in samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号