首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sawaya MR  Wojtowicz WM  Andre I  Qian B  Wu W  Baker D  Eisenberg D  Zipursky SL 《Cell》2008,134(6):1007-1018
Drosophila Dscam encodes a vast family of immunoglobulin (Ig)-containing proteins that exhibit isoform-specific homophilic binding. This diversity is essential for cell recognition events required for wiring the brain. Each isoform binds to itself but rarely to other isoforms. Specificity is determined by "matching" of three variable Ig domains within an approximately 220 kD ectodomain. Here, we present the structure of the homophilic binding region of Dscam, comprising the eight N-terminal Ig domains (Dscam(1-8)). Dscam(1-8) forms a symmetric homodimer of S-shaped molecules. This conformation, comprising two reverse turns, allows each pair of the three variable domains to "match" in an antiparallel fashion. Structural, genetic, and biochemical studies demonstrate that, in addition to variable domain "matching," intramolecular interactions between constant domains promote homophilic binding. These studies provide insight into how "matching" at all three pairs of variable domains in Dscam mediates isoform-specific recognition.  相似文献   

2.
3.
Complementary timer binding to transfer-RNA Val 1   总被引:1,自引:0,他引:1  
O Pongs  K Griese 《FEBS letters》1972,26(1):297-300
  相似文献   

4.
Fibroblast growth factors (FGFs) mediate essential cellular functions by activating one of four alternatively spliced FGF receptors (FGFRs). To determine the mechanism regulating ligand binding affinity and specificity, soluble FGFR1 and FGFR3 binding domains were compared for activity. FGFR1 bound well to FGF2 but poorly to FGF8 and FGF9. In contrast, FGFR3 bound well to FGF8 and FGF9 but poorly to FGF2. The differential ligand binding specificity of these two receptors was exploited to map specific ligand binding regions in mutant and chimeric receptor molecules. Deletion of immunoglobulin-like (Ig) domain I did not effect ligand binding, thus localizing the binding region(s) to the distal two Ig domains. Mapping studies identified two regions that contribute to FGF binding. Additionally, FGF2 binding showed positive cooperativity, suggesting the presence of two binding sites on a single FGFR or two interacting sites on an FGFR dimer. Analysis of FGF8 and FGF9 binding to chimeric receptors showed that a broad region spanning Ig domain II and sequences further N-terminal determines binding specificity for these ligands. These data demonstrate that multiple regions of the FGFR regulate ligand binding specificity and that these regions are distinct with respect to different members of the FGF family.  相似文献   

5.
《Molecular cell》2023,83(9):1462-1473.e5
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

6.
H-type thioredoxins (Trxs) constitute a particularly large Trx sub-group in higher plants. Here, the crystal structures are determined for the two barley Trx h isoforms, HvTrxh1 and HvTrxh2, in the partially radiation-reduced state to resolutions of 1.7 A, and for HvTrxh2 in the oxidized state to 2.0 A. The two Trxs have a sequence identity of 51% and highly similar fold and active-site architecture. Interestingly, the four independent molecules in the crystals of HvTrxh1 form two relatively large and essentially identical protein-protein interfaces. In each interface, a loop segment of one HvTrxh1 molecule is positioned along a shallow hydrophobic groove at the primary nucleophile Cys40 of another HvTrxh1 molecule. The association mode can serve as a model for the target protein recognition by Trx, as it brings the Met82 Cgamma atom (gamma position as a disulfide sulfur) of the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx and a substrate protein, as reported by Maeda et al. in an earlier paper. The occurrence of an intermolecular salt bridge between Glu80 of the bound loop segment and Arg101 near the hydrophobic groove suggests that charge complementarity plays a role in the specificity of Trx. In HvTrxh2, isoleucine corresponds to this arginine, which emphasizes the potential for specificity differences between the coexisting barley Trx isoforms.  相似文献   

7.
The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO(4), AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp(250)-Glu(252)). In addition, the glycine-rich loop of the protein, analogous to the "Gly triad" in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp(233) of the catalytic HGD motif, a novel twin arginine motif (Arg(340)/Arg(341)), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.  相似文献   

8.
Alternative splicing of Dscam generates an enormous molecular diversity with maximally 38,016 different receptors. Whether this large diversity is required in vivo is currently unclear. We examined the role of Dscam in neuron-target recognition of single mechanosensory neurons, which connect with different target cells through multiple axonal branches. Analysis of Dscam null neurons demonstrated an essential role of Dscam for growth and directed extension of axon branches. Expression of randomly chosen single isoforms could not rescue connectivity but did restore basic axonal extension and rudimentary branching. Moreover, two Dscam alleles were generated that each reduced the maximally possible Dscam diversity to 22,176 isoforms. Reduction of Dscam diversity resulted in specific connectivity defects of mechanosensory neurons. Furthermore, the observed allele-specific phenotypes suggest functional differences among isoforms. Our findings provide evidence that a very large number of structurally unique receptor isoforms is required to ensure fidelity and precision of neuronal connectivity.  相似文献   

9.
10.
Drosophila Down syndrome cell adhesion molecule (Dscam) potentially produces more than 150,000 cell adhesion molecules that share two alternative transmembrane/juxtamembrane (TM) domains, which dictate the dendrite versus axon subcellular distribution and function of different Dscam isoforms. Vertebrate genomes contain two closely related genes, DSCAM and DSCAM-Like1 (DSCAML1), which do not have extensive alternative splicing. We investigated the functional conservation between invertebrate Dscams and vertebrate DSCAMs by cross-species rescue assays and found that human DSCAM and DSCAML1 partially, but substantially, rescued the larval lethality of Drosophila Dscam mutants. Interestingly, both human DSCAM and DSCAML1 were targeted to the dendrites in Drosophila neurons, had synergistic rescue effects with Drosophila Dscam[TM2], and preferentially rescued the dendrite defects of Drosophila Dscam mutant neurons. Therefore, human DSCAM and DSCAML1 are functionally conserved with Drosophila Dscam[TM1] isoforms.  相似文献   

11.
The sequence-specific DNA binding of recombinant p42 and p51 ETS1 oncoprotein was examined quantitatively to determine whether the loss of the Exon VII phosphorylation domain in p42 ETS1 or the phosphorylation of expressed Exon VII in p51 ETS1 had an effect on DNA binding activity. The kinetics of sequence-specific DNA binding was measured using real-time changes in surface plasmon resonance with BIAcore (registered trademark, Pharmacia Biosensor) technology. The real-time binding of p42 and p51 ETS1 displayed significant differences in kinetic behavior. p51 ETS1 is characterized by a fast initial binding and conversion to a stable complex, whereas p42 ETS1 exhibits a slow initial binding and conversion to a stable complex. All of the p51 ETS1 DNA binding states are characterized by rapid turnover, whereas the p42 ETS1 DNA binding states are 4-20 times more stable. A model describing these kinetic steps is presented. Stoichiometric titrations of either p42 or p51 ETS1 with specific oligonucleotides show 1:1 complex formation. The DNA sequence specificity of the p42 and p51 ETS1 as determined by mutational analysis was similar. The in vitro phosphorylation of p51 ETS1 by CAM kinase II obliterates its binding to specific DNA, suggesting that the regulation of p51 ETS1 sequence-specific DNA binding occurs through phosphorylation by a calcium-dependent second messenger. The p42 ETS1 lacks this regulatory domain (Exon VII), and binding to its specific DNA sequence is not sensitive to calcium signaling.  相似文献   

12.
CSF-1, the major regulator of macrophage (Mphi) development, has three biologically active isoforms: a membrane-spanning, cell surface glycoprotein, a secreted glycoprotein, and a secreted proteoglycan. We hypothesized that there are shared and unique roles of individual CSF-1 isoforms during renal inflammation. To test this, we evaluated transgenic mice only expressing the cell surface or precursors of the secreted CSF-1 isoforms for Mphi accumulation, activation, and Mphi-mediated tubular epithelial cell (TEC) apoptosis during unilateral ureteral obstruction. The only difference between secreted proteoglycan and secreted glycoprotein CSF-1 isoforms is the presence (proteoglycan) or absence (glycoprotein) of an 18-kDa chondroitin sulfate glycosaminoglycan. We report that 1) cell surface CSF-1 isoform is sufficient to restore Mphi accumulation, activation, and TEC apoptosis to wild-type levels and is substantially more effective than the secreted CSF-1 isoforms; 2) the chondroitin sulfate glycosaminoglycan facilitates Mphi accumulation, activation, and TEC apoptosis; 3) increasing the level of secreted proteoglycan CSF-1 in serum amplifies renal inflammation; and 4) cell-cell contact is required for Mphi to up-regulate CSF-1-dependent expression of IFN-gamma. Taken together, we have identified central roles for the cell surface CSF-1 and the chondroitin sulfate chain on secreted proteoglycan CSF-1 during renal inflammation.  相似文献   

13.
14.
15.
16.
Fms1 is a rate-limiting enzyme for the biosynthesis of pantothenic acid in yeast. Fms1 has polyamine oxidase (PAO) activity, which converts spermine into spermidine and 3-aminopropanal. The 3-aminopropanal is further oxidized to produce beta-alanine, which is necessary for the biosynthesis of pantothenic acid. The crystal structures of Fms1 and its complex with the substrate spermine have been determined using the single-wavelength anomalous diffraction (SAD) phasing method. Fms1 consists of an FAD-binding domain, with Rossmann fold topology, and a substrate-binding domain. The active site is a tunnel located at the interface of the two domains. The substrate spermine binds to the active site mainly via hydrogen bonds and hydrophobic interactions. In the complex, C11 but not C9 of spermine is close enough to the catalytic site (N5 of FAD) to be oxidized. Therefore, the products are spermidine and 3-aminopropanal, rather than 3-(aminopropyl) 4-aminobutyraldehyde and 1,3-diaminoprone.  相似文献   

17.
The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.  相似文献   

18.
Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation.  相似文献   

19.
20.
The in vivo specificity for E-selectin binding to a panel of N-linked oligosaccharides containing a clustered array of one to four sialyl Lewisx (SLex; NeuAcalpha2-3Gal[Fucalpha1-3]beta1-4GlcNAc) determinants was studied in mice. Following intraperitoneal dosing with lipopolysaccharide, radioiodinated tyrosinamide N-linked oligosaccharides were dosed i.v. and analyzed for their pharmacokinetics and biodistribution. Specific targeting was determined from the degree of SLex oligosaccharide targeting relative to a sialyl oligosaccharide control. Oligosaccharides targeted the kidney with the greatest selectivity after a 4-h induction period following lipopolysaccharide dosing. Unique pharmacokinetic profiles were identified for SLex biantennary and triantennary oligosaccharides but not for monovalent and tetraantennary SLex oligosaccharides or sialyl oligosaccharide controls. Biodistribution studies established that both SLex biantennary and triantennary oligosaccharides distributed to the kidney with 2-3-fold selectivity over sialyl oligosaccharide controls, whereas monovalent and tetraantennary SLex oligosaccharides failed to mediate specific kidney targeting. Simultaneous dosing of SLex biantennary or triantennary oligosaccharide with a mouse anti-E-selectin monoclonal antibody blocked kidney targeting, whereas co-administration with anti-P-selectin monoclonal antibody did not significantly block kidney targeting. The results suggest that SLex biantennary and triantennary are N-linked oligosaccharide ligands for E-selectin and implicate E-selectin as a bivalent receptor in the murine kidney endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号