共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonic acid and liquid hot water pretreatments were applied to corn stover. Temperatures ranged from 180 to 220 degrees C; reaction times varied between 2 and 32 min and prereaction carbon dioxide pressure was either 0 or 800 psig. Over the range of reaction conditions tested, it was found that the presence of carbonic acid had an effect of increasing the concentrations of xylose and furan compounds in the hydrolysate that was significant at above the 99% confidence level. Thus there appears to be an increase in the severity of the pretreatment conditions with the presence of carbonic acid. These results are contrary to previously reported results on aspen wood, where the presence of carbonic acid was not found to have an effect on either the xylose or furan concentrations. Although pretreatment conditions were more severe with the addition of carbonic acid, the presence of carbonic acid resulted in a hydrolysate with a higher final pH. Thus it appears that the higher severity conditions reduce the accumulation of organic acids in the hydrolysate. This result was consistent with previously reported work on carbonic acid pretreatment of aspen wood. 相似文献
2.
Low-liquid pretreatment of corn stover with aqueous ammonia 总被引:1,自引:0,他引:1
A low-liquid pretreatment method of corn stover using aqueous ammonia was studied to reduce the severity and liquid throughput associated with the pretreatment step for ethanol production. Corn stover was treated at 0.5-50.0 wt.% of ammonia loading, 1:0.2-5.0 (w/w) of solid-to-liquid ratio, 30 °C for 4-12 weeks. The effects of these conditions on the composition and enzyme digestibility of pretreated corn stover were investigated. Pretreatment of corn stover at 30 °C for four weeks using 50 wt.% of ammonia loading and 1:5 solid-to-liquid ratio resulted in 55% delignification and 86.5% glucan digestibility with 15 FPU cellulase + 30 CBU β-glucosidase/g-glucan.Simultaneous saccharification and fermentation of corn stover treated at 30 °C for four weeks using 50 wt.% ammonia loading and 1:2 solid-to-liquid ratio gave an ethanol yield of 73% of the theoretical maximum based on total carbohydrates (glucan + xylan) present in the untreated material. 相似文献
3.
Delignification kinetics of corn stover in lime pretreatment 总被引:4,自引:0,他引:4
Corn stover was pretreated with excess calcium hydroxide (0.5 g Ca(OH)(2)/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55 degrees C. The delignification kinetic model of corn stover used three first-order reactions with following forms: W(L) = 0.09 x exp(-infinity x t) + 0.28 x exp(-k(2) x t) + 0.63 x exp(-k(3) x t) in non-oxidative pretreatment; W(L) = 0.16 x exp(-infinity x t) + 0.27 x exp(-k(2) x t) + 0.57 x exp(-k(3) x t) in oxidative pretreatment. The first term corresponds to the initial phase, which is essentially infinite at the time scale of the reaction (weeks). The second and third terms correspond to the bulk and residual phases of delignification. The activation energies for delignification in the oxidative lime pretreatment reactions were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively, which are similar to the Kraft delignification of bagasse, but much less than in Kraft delignification of wood. 相似文献
4.
Lime pretreatment and enzymatic hydrolysis of corn stover 总被引:10,自引:0,他引:10
Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55 degrees C. The optimal condition is 55 degrees C for 4 weeks with aeration. Glucan (91.3%) and xylan (51.8%) were converted to glucose and xylose respectively, when the treated corn stover was enzymatically hydrolyzed with 15 FPU/g cellulose. Only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Of the initial lignin, 87.5% was maximally removed. Almost all acetyl groups were removed. After 4 weeks at 55 degrees C with aeration, some cellulose and hemicellulose were solubilized as monomers and oligomers in the pretreatment liquor. When considering the dissolved fragments of glucan and xylan in the pretreatment liquor, the overall yields of glucose and xylose were 93.2% and 79.5% at 15 FPU/g cellulose. The pretreatment liquor has no inhibitory effect on ethanol fermentation. 相似文献
5.
Masatsugu Takada Richard P. Chandra John N. Saddler 《Biotechnology and bioengineering》2019,116(11):2864-2873
To be effective, steam pretreatment is typically carried out at temperatures/pressures above the glass transition point (Tg) of biomass lignin so that it can partly fluidize and relocate. The relocation of Douglas-fir and corn stover derived lignin was compared with the expectation that, with the corn stover lignin's lower hydrophobicity and molecular weight, it would be more readily fluidized. It was apparent that the Tg of lignin decreased as the moisture increased, with the easier access of steam to the corn stover lignin promoting its plasticization. Although the softwood lignin was more recalcitrant, when it was incorporated onto filter paper, it too could be plasticized, with its relocation enhancing enzymatic hydrolysis. When lignin recondensation was minimized, the increased hydrophobicity suppressed lignin relocation. It was apparent that differences in the accessibility of the lignin present in Douglas-fir and corn stover to steam significantly impacted lignin fluidization, relocation, and subsequent cellulose hydrolysis. 相似文献
6.
7.
Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose 总被引:2,自引:0,他引:2
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. 相似文献
8.
Lishi Yan Hongman Zhang Jingwen Chen Zengxiang Lin Qiang Jin Honghua Jia He Huang 《Bioresource technology》2009,100(5):1803-1808
A cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90–93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 °C during the optimal reaction time (90 min). The remaining solid residue exhibited enzymatic digestibility of 90–95% with cellulase loading of 60 FPU/g glucan that was due to the effective lignin removal (70–75%) in this process. Compared with flow-through and compress-hot water pretreatment process, the DCF method produces a higher sugar concentration and higher xylose monomer yield. The novel DCF process provides a feasible approach for lignocellulosic material pretreatment. 相似文献
9.
Pretreatment steps are necessary for the bioconversion of corn stover (CS) to xylitol. In order to optimize the pretreatment parameters, the sulfuric acid concentration, sulfuric acid residence time, and solid slurry concentration were evaluated, based on the glucose and xylose recovered from CS at the relatively low temperature of 120°C. The optimum conditions were found to be pretreatment with 2.5% (w/v) sulfuric acid for 1.5 h, with a solid slurry concentration of 90 g/L. Under these conditions, the hydrolysis rates of glucan and xylan were approximately 26.0 and 82.8%, respectively. High xylitol production (10.9 g/L) and conversion yield (0.97 g/g) were attained from corn stover hydrolysate (CSH) without detoxification and any nutrient addition. Our results were similar for xylitol production in synthetic medium under the same conditions. The non-necessity of both the hydrolysate detoxification step and nutrient addition to the CSH is undoubtedly promising for scale-up application on an industrial scale, because this medium-based manufacturing process is expected to reduce the production cost of xylitol. The present study demonstrates that value-added xylitol could be effectively produced from CS under optimized pretreatment conditions, especially with CSH as the substrate material. 相似文献
10.
Controlled pH, liquid hot water pretreatment of corn stover has been optimized for enzyme digestibility with respect to processing temperature and time. This processing technology does not require the addition of chemicals such as sulfuric acid, lime, or ammonia that add cost to the process because these chemicals must be neutralized or recovered in addition to the significant expense of the chemicals themselves. Second, an optimized controlled pH, liquid hot water pretreatment process maximizes the solubilization of the hemicellulose fraction as liquid soluble oligosaccharides while minimizing the formation of monomeric sugars. The optimized conditions for controlled pH, liquid hot water pretreatment of a 16% slurry of corn stover in water was found to be 190 degrees C for 15 min. At the optimal conditions, 90% of the cellulose was hydrolyzed to glucose by 15FPU of cellulase per gram of glucan. When the resulting pretreated slurry, in undiluted form, was hydrolyzed by 11FPU of cellulase per gram of glucan, a hydrolyzate containing 32.5 g/L glucose and 18 g/L xylose was formed. Both the xylose and the glucose in this undiluted hydrolyzate were shown to be fermented by recombinant yeast 424A(LNH-ST) to ethanol at 88% of theoretical yield. 相似文献
11.
不同玉米秸秆部位的成分组成及分布对预处理和酶解影响显著。研究表明:韧皮部与髓芯的成分相近,但叶子的差异较大,其木聚糖和总糖的质量分数最高,分别为29.48%和66.15%,而木质素的质量分数最低,因而叶子更容易预处理。玉米秸秆在稀酸预处理过程中可回收96.9%葡聚糖和50.0%~70.0%木聚糖,其中50.0%~60.0%木聚糖水解成木糖溶出;不同部位的木聚糖损失率与初始的木聚糖含量正相关;经稀酸预处理后,叶子中葡聚糖的质量分数最高,达72.40%,叶子和髓芯易于被纤维素酶水解生成葡萄糖,而韧皮部困难。不同部位的酶解得率与自身的葡聚糖含量正相关,与酸不溶木质素含量负相关,同时受原料的物理结构、葡聚糖和木质素大分子的化学组成等影响。 相似文献
12.
Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment 总被引:3,自引:0,他引:3
Mingxia Zheng Xiujin LiLaiqing Li Xiaojin YangYanfeng He 《Bioresource technology》2009,100(21):5140-5145
A new method of wet state (WS) sodium hydroxide (NaOH) was advanced to pretreat corn stover for enhancing biogas production. The results showed that 88% moisture content, 3-day treatment time and ambient temperature (20 °C) was appropriate for WS NaOH pretreatment. The NaOH dose of 2% and the loading rate of 65 g/L were found to be optimal in terms of 72.9% more total biogas production, 73.4% more methane yield, and 34.6% shorter technical digestion time, as compared to the untreated one. WS pretreatment used 86% shorter treatment time and 66.7% less NaOH dose than solid state one. The analyses of chemical compositions and chemical structures showed that 9.3–19.1% reduction of the contents of total Lignin, cellulose, and hemicellulose (LCH), and 27.1–77.1% increase of hot-water extractives contributed to the enhancement of biogas production. WS NaOH pretreatment could be one of cost-effective methods for high efficient biological conversion of corn stover into bioenergy. 相似文献
13.
John?M.?Yarbrough Ashutosh?Mittal Elisabeth?Mansfield Larry?E.?TaylorII Sarah?E.?Hobdey Deanne?W.?Sammond Yannick?J.?Bomble Michael?F.?Crowley Stephen?R.?Decker Michael?E.?Himmel
Background
Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall.Results
In this study, we have compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-d-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-d-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration.Conclusion
We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-d-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.14.
Corn stover was pretreated with various chemical agents, including sodium hydroxide, sulfuric acid, ethylenediamine, n-butylamine (either alone or in solution with methanol), and acetonitrile or ethanol containing hydrochloric acid. Of these chemicals, n-butylamine was the best reagent for pretreatment of corn stover, considering the degree of loss of total carbohydrate, delignification, cumulative weight loss, cumulative yield of reducing sugars per original total carbohydrate, and the potential ease of recovery and reuse of reagent. In comparison to the other reagents tested, n-butylamine (n-BA) selectively delignified corn stover. The best conditions were as follows: a 12-h presoak of about a 155 g dry wt/L slurry (1 mm average particle size) in 100% n-BA at room temperature, followed by 30 min of refluxing (86.5 degrees C) with 40% (w/w) n-BA-distilled water solution. The cumulative yield of reducing sugars after enzymic hydrolysis was 44.5% of the original total carbohydrate and the cumulative total weight loss (dry basis) was 59%. Degradative loss of total carbohydrate during pretreatment was not detected. 相似文献
15.
A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true
biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such
as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid
stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses
potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from
corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose
stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin.
A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was
also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively
pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly
smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing
compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol
and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular
weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As
a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential
utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are juxtaposed with
market penetration and saturation. 相似文献
16.
Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover 总被引:12,自引:0,他引:12
Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour. 相似文献
17.
The kinetics of crystalline cellulose and hemicellulose hydrolysis in corn stover were studied with a nonisothermal technique. Reactions were arrested at temperatures between 160 and 240 degrees C and product sugars were analyzed using a Bio-Rad HPX-85 liquid chromatographic column. A simple first-order series reaction model was used for both cellulose and hemicellulose hydrolysis reactions. Kinetic parameters were obtained for three different sulphuric acid concentrations (0.49, 0.92, and 1.47 wt %). Activation energies remained constant over this acid concentration range but the preexponential factors showed an increase with acid concentration. Relationships were obtained between the preexponential factors and acid concentrations. Cellulose hydrolysis and glucose degradation reactions were observed to be of higher order with respect to acid concentration in comparison with the previous studies with other raw materials. 相似文献
18.
Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis 总被引:3,自引:0,他引:3
Zeng M Mosier NS Huang CP Sherman DM Ladisch MR 《Biotechnology and bioengineering》2007,97(2):265-278
Particle size associated with accessible surface area has a significant impact on the saccharification of plant cell walls by cellulolytic enzymes. Small particle sizes of untreated cellulosic substrate are more readily hydrolyzed than large ones because of higher specific surface area. Pretreatment enlarges accessible and susceptible surface area leading to enhanced cellulose hydrolysis. These hypotheses were tested using ground corn stover in the size ranges of 425-710 and 53-75 microm. Ultrastructural changes in these particles were imaged after treatment with cellulolytic enzymes before and after liquid hot water pretreatment. The smaller 53-75 microm corn stover particles are 1.5x more susceptible to hydrolysis than 425-710 microm corn stover particles. This difference between the two particle size ranges is eliminated when the stover is pretreated with liquid hot water pretreatment at 190 degrees C for 15 min, at pH between 4.3 and 6.2. This pretreatment causes ultrastructural changes and formation of micron-sized pores that make the cellulose more accessible to hydrolytic enzymes. 相似文献
19.
The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis 总被引:1,自引:0,他引:1
Background
Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover.Results
The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover.Conclusion
G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method. 相似文献20.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area. 相似文献