首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we found that apical and basolateral EGF receptors (EGFR) on primary canine gastric monolayers decreased paracellular permeability, evident by increased transepithelial electrical resistance (TER) and decreased flux of [(3)H]mannitol (MF). After studying monolayers in Ussing chambers, we now report that treatment with apical, but not basolateral, EGF enhanced tolerance to apical H(+), evident by a slower decay in TER and an attenuated rise in MF. Enhanced tolerance to apical acid was evident within 10 min of treatment with apical EGF. Immunoneutralization of endogenous transforming growth factor (TGF)-alpha accelerated the drop in TER and the rise in MF in response to apical acidification; apical EGF reversed these effects. Study of monolayers cultured in Transwell inserts showed that immunoblockade of basolateral, but not apical, EGFR also impaired the resistance to apical acidification and enhanced MF. We conclude that apical EGFR regulates the barrier to apical acidification via effects on paracellular resistance. Although exogenous basolateral EGF has a less apparent effect on the barrier to acid, endogenous ligand active at basolateral EGFR plays an important role in maintaining the barrier to apical acid. Our data implicate a role for an apical EGFR ligand, which may be EGF or another member of the EGF family.  相似文献   

2.
P Kugler  A Miki 《Histochemistry》1985,83(4):359-367
The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24 h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4 degrees C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5-60 min at 20 degrees and 37 degrees C in Con-A-free serum resulted in a temperature-dependent internalization of membrane-bound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37 degrees C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constituents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.  相似文献   

3.
Senescence is the process of programmed degradation. The G2 line of pea exhibits apical senescence-delaying phenotype under short-day (SD) conditions, but the mechanism regulating the apical senescence is still largely unknown. Gibberellin (GA) was proved to be able to delay this apical senescence phenotype in G2 pea grown under long-day (LD) conditions. Here we show that the initiation of cell death signals in the terminal floral meristem was involved in the regulation of apical senescence in pea plants. SD signals prevented the formation of the cell death region in the apical mersitem. Moreover, GA3 treatment could effectively inhibit the occurrence of cell death-mediated apical senescence in LD-grown apical buds. Therefore, our data suggest that the prevention of apical senescence in SD-grown G2 pea through GA3 treatment may be largely responsible for the regulation of occurrence of the DNA fragmentation in apical meristem.  相似文献   

4.
Summary The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4°C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5 60 min at 20° and 37°C in Con-A-free serum resulted in a temperature-dependent internalization of membranebound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37°C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constitutents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

5.
The cell division pattern in the apical meristem of Psilotum nudum was examined using epi-illumination microscopy and a paraffin method. In the subterranean axis, about half of the derivative cells of the apical cell produce tetrahedral daughter apical cells by the first three or more oblique divisions. Roughly half of these apical cells give rise to the apical meristems of axes, whereas the other half do not. Various relative activities of the mother and daughter apical cells give rise to disordered branching patterns. In the ill-organized apical meristem as well as the leafless and capless structure, the Psilotum subterranean axis differs from the basic organs of vascular plants such as stem and root and seems to be an independent organ. The cell division pattern characteristic of the subterranean axis persists in the young unbranched aerial shoots, although fewer daughter apical cells are produced. Dichotomous branching of the aerial shoots, as in a variety of organs of pteridophytes, involves loss of the mother apical cell followed by appearance of two daughter apical cells.  相似文献   

6.
Grain number per unit area is an effective component of grain yield in bread wheat. Water-stress induced apical sterility (tip sterility) reduces the number of grains and, consequently, the grain yield in semi-arid regions with a shortage of available water during the pre-anthesis period. Crosses between apical sterile and apical fertile varieties and selection lines were made and F1, BC1, and F2 populations were subjected to moderate water-stress to study the inheritance of this character. The F2 and BC1 plants were qualitatively categorised into two phenotypes and tested for monohybrid and dihybrid segregation hypotheses. All the spikes of F1 plants obtained from crosses between apical fertile and apical sterile varieties were fully fertile indicating apical fertility is dominant to apical sterility. The F2 segregation Results from crosses between apical fertile lines and Y82187 suggested two complementary dominant genes segregating independently were involved in tolerance to water-stress induced apical sterility. In other words, two dominant genes determine apical fertility in these crosses and if one of these loci is homozygous, recessive waterstress will induce apical sterility. One F2 population segregated for both apical sterility and vernalisation response. Semi-winter plants had more sterile spikelets and the result of chi-square test confirmed monhybrid segregation for vernalisation response.  相似文献   

7.
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.  相似文献   

8.
We addressed the role of Src on cortical actin dynamics and polarized endocytosis in MDCK cells harboring a thermosensitive v-src mutant. Shifting monolayers established at 40 degrees C (non-permissive temperature) to 34 degrees C (permissive temperature) rapidly reactivated v-Src kinase, but tight junctions and cell polarity resisted for >6 h. At this interval, activated v-src was recruited on apical vesicles, induced cortactin-associated apical circular ruffles productive of macropinosomes, thereby accelerating apical pinocytosis by approximately fivefold. Ruffling and macropinosome formation were selectively abrogated by inhibitors of actin polymerization, phosphoinositide 3-kinase, phospholipase C, and phospholipase D, which all returned apical pinocytosis to the level observed at 40 degrees C, underscoring the distinct control of apical micropinocytosis and macropinocytosis. Src promoted microtubule-dependent fusion of macropinosomes to the apical recycling endosome (ARE), causing its strong vacuolation. However, preservation of tubulation and apical polarity indicated that its function was not affected. The ARE was labeled for v-src, Rab11, and rabankyrin-5 but not early endosome antigen 1, thus distinguishing two separate Rab5-dependent apical pathways. The mechanisms of Src-induced apical ruffling and macropinocytosis could shed light on the triggered apical enteroinvasive pathogens entry and on the apical differentiation of osteoclasts.  相似文献   

9.
Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49:368-379, 2011.  相似文献   

10.
Formation and maintenance of the shoot apical meristem   总被引:16,自引:0,他引:16  
Development in higher plants is characterized by the reiterative formation of lateral organs from the flanks of shoot apical meristems. Because organs are produced continuously throughout the life cycle, the shoot apical meristem must maintain a pluripotent stem cell population. These two tasks are accomplished within separate functional domains of the apical meristem. These functional domains develop gradually during embryogenesis. Subsequently, communication among cells within the shoot apical meristem and between the shoot apical meristem and the incipient lateral organs is needed to maintain the functional domains within the shoot apical meristem.  相似文献   

11.
A kinetic model is developed for cell differentiation in the fern gametophyte to test hypotheses on the role of spatially patterned plasmodesmata networks in development. Of particular interest is the establishment and maintenance of apical cell type in a single cell, with concurrent suppression of this character in all other cells (apical dominance). Steps towards understanding apical cell localization in geometrically simple gametophytes may shed light on the establishment and maintenance of apical meristems in higher plants. The model, based on the plasmodesmata maps of Tilney and colleagues and involving kinetics for a requisite minimum of two morphogens. successfully produces the apical/non-apical cell differentiation patterns of normal development, and redifferentiation due to cell isolation, in six stages from 0-30 d of development. Our results indicate that increasing apical cell plasmodesmata number, as development progresses, is not required for effective transport across apical cell walls in maintaining apical dominance.  相似文献   

12.
Brown algae show a significant diversity in thallus forms, giving a great number of model systems for the study of many important morphogenetic mechanisms. Thallus growth in brown algae is diffuse, intercalary or apical. The latter takes place by means of one or more apical cells. Among the brown algal groups, Sphacelariales, Dictyotales and Fucales give the best examples of apical growth, and have been repeatedly used for the study of the morphogenetic role of apical cells. In Sphacelariales the apical cells appear strongly polarized, the polarity expressed also on the organization of the microtubule cytoskeleton. These cells show a type of growth that can be compared with tip growth of root hairs, moss protonemata, pollen tubes and fungal hyphae, and is called ‘tip-like growth’. The thallus of Dictyotales grows by the activity of one or more apical cells showing variable degree of polarity. These cells do not exhibit any type of apical growth. In Fucales the vegetative thallus develops by means of an active apical meristem, which includes a large apical cell. This cell does not show polar organization or apical growth. However, in germinating zygotes of Fucales a polar axis is established and during the first stages of development they show a typical tip growth. In the present paper, the available information on the structure and division pattern of apical cells is presented. Their morphogenetic role is discussed, in relation to polarity, cytoskeleton organization, and apical dominance.  相似文献   

13.
The meristem of Splachnidium rugosum consists of a central apical cell surrounded by a region of actively dividing cells, many of which bear hairs. Conceptacle initials are scattered throughout the surface layer of the meristematic region. Conceptacle initials and apical hairs differentiate adjacent to the apical cell. The apical cell and the conceptacle initials are distinctive, pear-shaped cells possessing similar cytological features that are consistent with significant metabolic activity. They have a nucleus surrounded by dictyosomes, a stellate chloroplast, mitochondria, and numerous vesicles and physodes. When the apical cell is damaged as a result of experimental manipulation, growth ceases. It is inferred that the apical cell controls cell division in the meristematic region and also the differentiation of conceptacle initials and apical hairs. The apical meristems of Splachnidium and species of the Fucales have several important features in common, including the growth-regulatory role of the apical cell and the process of conceptacle initiation. The taxa may possibly have a common evolutionary origin. The problematic and unresolved taxonomic status of Splachnidium is discussed.  相似文献   

14.
The paper presents the results of statistical evaluation of the changes of cellular apex connections, apical angles, and apical indices of ventral cells of the epiectodermal gastrula of Xenopus during the first four hours after the relaxation of mechanical tension. In the unrelaxed epithelium, an overwhelming majority of cells have three apical connections, apical angles close to 120°, and apical indices around one (isodiametric cells); after relaxation, the number of cells with more than three connections, the number of apical angles deviating substantially from 120°, and the percentage of columnar cells with high apical index increase. Apices with more than three connections tend to gather in enclosed groups, forming a straightened line of cell walls. The length and curvature of cell walls with four apical connections significantly exceeds those same indicators for cells with three apical connections. The observed changes in topology and geometry of cells correspond to reconstructions observed during normal morphogenesis. They are considered in terms of the hyper-restoration model of mechanical tension in relaxed epithelial layers.  相似文献   

15.
At term, uterine epithelial cells express oxytocin (OT) as well as the OT receptor (OTR). Like other epithelial cells, uterine epithelial cells are polarized and sort secretory and membrane components to the apical or the basolateral cell surface. We have studied the subcellular localization of OT-like immunoreactivity (OT-IR) and OTR-IR in rat uterine epithelium by immuno-gold labelling of ultrathin frozen sections. Our observations indicate that OT and OTR are both distributed preferentially to the apical surface of rat uterine epithelial cells. OT-IR showed a 6-fold apical versus basolateral preference and was localized in apical secretory vesicles, suggesting that uterine OT is released by apical exocytosis. OTR-IR was localized to the apical surface with a 9-fold apical versus basolateral preference and was found specifically in association with apical microvilli. The present findings represent the first example of a G protein-coupled receptor that is preferentially localized on the microvillar compartment and support the concept of an autocrine uterine OT system at the apical side of the uterine epithelium.  相似文献   

16.
Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.  相似文献   

17.
ARNO is a guanine-nucleotide exchange protein for the ARF family of GTPases. Here we show that in polarized epithelial cells, ARNO is localized exclusively to the apical plasma membrane, where it regulates endocytosis. Expression of ARNO stimulates apical endocytosis of the polymeric immunoglobulin receptor, and coexpression of ARF6 with ARNO leads to a synergistic stimulation of apical endocytosis. Expression of a dominant negative ARF6 mutant, ARF6-T27N, antagonizes this stimulatory effect. Deletion of the N-terminal coiled-coil (CC) domain of ARNO causes the mutant ARNO to localize to both the apical and basolateral plasma membranes. Expression of the CC domain alone abolishes ARNO-induced apical endocytosis as well as co-localization of IgA-receptor complexes with ARNO and clathrin. These results suggest that the CC domain contributes to the specificity of apical localization of ARNO through association with components of the apical plasma membrane. We conclude that ARNO acts together with ARF6 to regulate apical endocytosis.  相似文献   

18.
To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.  相似文献   

19.
Antidiuretic hormone (ADH) stimulation increases the apical membrane water permeability of granular cells in toad urinary bladder. This response correlates closely with the fusion of tubular cytoplasmic vesicles with the membrane and delivery of intramembrane particle (IMP) aggregates from the tubules (aggrephores) to the apical membrane. These aggregates are believed to be associated with the channels responsible for the water permeability increase. Removal of ADH triggers apical membrane endocytosis and disappearance of aggregates from the apical membrane. However, it has been unclear whether aggregate disappearance is due to disassembly of aggregates within the apical membrane or to their endocytic retrieval as intact structures. Using colloidal gold and horseradish peroxidase to follow endocytosis from the apical surface after ADH removal, we have directly observed in cross-fractured bladder cells the intramembrane structure of intracellular vesicles that contain these fluid-phase markers. Under these conditions, intact aggregates can be identified in the membrane of tubular endocytosed vesicles. This directly demonstrates that conditions which lower apical membrane water permeability cause the tubular aggrephores to "shuttle" intact aggregates from the apical membrane back into the cytoplasm. An additional population of vesicles with tracer are found which are spherical and display structural features of the apical membrane, as well as occasional aggregates. These vesicles may be responsible for retrieval of aggregates from the surface apical membrane.  相似文献   

20.
Formation of the apical surface and lumen is a fundamental, yet poorly understood, step in epithelial organ development. We show that PTEN localizes to the apical plasma membrane during epithelial morphogenesis to mediate the enrichment of PtdIns(4,5)P2 at this domain during cyst development in three-dimensional culture. Ectopic PtdIns(4,5)P2 at the basolateral surface causes apical proteins to relocalize to the basolateral surface. Annexin 2 (Anx2) binds PtdIns(4,5)P2 and is recruited to the apical surface. Anx2 binds Cdc42, recruiting it to the apical surface. Cdc42 recruits aPKC to the apical surface. Loss of function of PTEN, Anx2, Cdc42, or aPKC prevents normal development of the apical surface and lumen. We conclude that the mechanism of PTEN, PtdIns(4,5)P2, Anx2, Cdc42, and aPKC controls apical plasma membrane and lumen formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号