首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Danio rerio (zebrafish) shows high similarity with humans in terms of bone architecture, bone cells, matrix proteins and molecular signalling. The fish body is covered by elasmoid scales which are part of the dermal skeleton. Since few data have been published about the function of the fish scale cells, we investigated the mineralization pattern of the scale and the role of the episquamal osteoblasts in the neodeposition of the bone tissue. First, we described a specific mineralization pattern and distribution of the bone forming cells in different areas of the scale. We observed along the external circuli that, during the scale growth, the marginal cells migrate and organize in a cord-like structure just before the mineralization process takes place generating a new circulus. These cells exhibit alkaline phosphatase activity, a well known mammalian osteoblastic differentiation marker. The internal circuli are also characterized by new matrix deposition. Thus, zebrafish scale represents a useful model for analyzing the osteoblast behaviour during bone formation and mineralization and it could be useful in physiological studies and pharmacological tests.  相似文献   

2.
Cyclic rearrangements of the microtubules (Mts) occur in the hyposquamal scleroblasts which synthesize the highly ordered three-dimensional collagen network forming the basal plate of the fish scale. The distribution of Mts containing tyrosinated and detyrosinated alpha-tubulin (Tyr-Mts and Glu-Mts, respectively) was analyzed in relation to the frequency of Mt reorganization in the teleostean elasmoid scale during collagen deposition using two specific monoclonal antibodies. In the very flat hyposquamal scleroblasts of fully developed scales (with a very low synthetic activity) two microtubule populations were identified. Most contain Tyr-tubulin while Glu-tubulin is found in some "stable" Mts. In the tall prismatic scleroblasts of regenerating scales (active in collagen synthesis) only Tyr-Mts have been revealed. In late stage of regeneration, when the synthetic activity decreases and the scleroblasts flatten, an increasing centriole and Mt labeling with Glu-tubulin antibody was observed. The intimate relationship of intracellular microtubule arrangement and extracellular collagen fibril pattern reported earlier (Zylberberg et al., Cell Tissue Res. 253, 597-603 (1988], together with the results presented here, support the hypothesis that a changing Mt pattern is involved in the generation of the collagen plywood.  相似文献   

3.
Transmission electron microscopic (TEM) examination of cellular scales of Leporinus friderici reveals the presence of melanophores associated with the hyposquama, a continuous cellular layer lining the inner surface of the scale. Hyposquamal scleroblasts synthesize the collagen fibrils forming the scale matrix. Some scleroblasts lining the deep surface of the scale margin become trapped within the collagenous matrix. Neighboring melanophores become inserted within the hyposquama. They contact the scale matrix and show morphological features resembling those of the adjacent hyposquamal scleroblasts with which they are connected and, like them, they appear to be involved in the production of the collagenous scale matrix. The present ultrastructural study favors the hypothesis that melanophores in vivo are like tumorous cell lines in vitro in that they maintain a degree of plasticity allowing changes in their phenotype according to environmental conditions. The close morpho-functional links between scale scleroblasts and melanophores suggest that they could be closely related lineages derived from the same basic stem cells and support the hypothesis that scale scleroblasts as well as melanophores are neural crest derivatives. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Summary Scale regeneration has been studied in Hemichromis bimaculatus. The removed scale, which serves as a control, is covered by its surrounding scleroblasts as can be seen with scanning electron microscopy. Subsequently, during regeneration, a population of scleroblasts arises in the empty dermal pocket as shown with transmission electron microscopy. At first, an elongated papilla of regeneration forms, probably from the differentiation of dermal fibroblasts. A scale anlage composed of the osseous layer appears in the middle of the papilla, which becomes a regenerating bag. All the surrounding large scleroblasts are involved in scale formation, although later three populations of scleroblasts specialize according to their location around the scale. Superficial scleroblasts flatten when the final thickness of the osseous layer of the scale is attained; the deep scleroblasts are responsible for the formation of the basal plate whereas marginal scleroblasts increase the diameter of the osseous layer of the scale.During scale regeneration, scleroblasts are more numerous and larger than during scale ontogenesis. In particular, deep scleroblasts form a columnar epithelium when the basal plate is laid down, a feature which is not found during scale ontogenesis. Moreover, the regenerated basal plate exhibits an orthogonal plywood arrangement that is never seen in the embryonic scale where the plywood is of the intermediate type.  相似文献   

5.
Expression of two zebrafish developmental posterior hoxa genes, hoxa11b and hoxa13b, was studied by in situ hybridization during pectoral and caudal fin development and regeneration. Expression was restricted to cells of the bony rays region. During fin development, molecular cytological analysis revealed that a subpopulation of mesenchymal cells expressed these two hoxa genes during their early differentiation in the subapical region of the developing ray. These cells were identified as differentiating dermal bone making cells (scleroblasts). During fin regeneration, hoxa11b and hoxa13b genes are both induced in undifferentiated cells of the distalmost blastema region (DMB) and the proliferating zone (PZ) and later in differentiating bone-forming cells. In addition, the transient regionalization of the hoxa13b expression pattern in differentiated bone-forming cells along the proximodistal axis of the regenerating ray suggests that hoxa13b could participate in ray patterning. This study is the first to establish a correlation between hoxa gene expression and dermal bone cell differentiation.  相似文献   

6.
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.  相似文献   

7.
The regenerating scale and tissues comprising the scale pocket of Fundulus olivaceus were examined microscopically at specific intervals. Scale removal resulted in a thickening of the epidermis which persisted through the early stages of regeneration. This thickening was due in part to the appearance of columnar basal cells which divided producing cells that became mucous cells and squamous cells. The scale regenerated as a relatively large plate of bone which first appeared between layers of scleroblasts on the floor of the scale pocket and then grew producing circuli and radii. By the fourth day of regeneration, calcium was observed in the cytoplasm of the scleroblasts and at randomly distributed foci in the osseous portion of the scale. The osseous layer was completely calcified by 15 days of regeneration.  相似文献   

8.
Summary The scales of Tilapia are surrounded by an envelope of scleroblasts responsible for the production of layers of collagen that constitute the bulk of the scale. The scleroblasts adjoining the lateral face of the oldest scale region gradually atrophy. New collagen layers are deposited against the inner face of the scale, the adjoining scleroblasts showing evidence of high metabolic activity. Calcification occurs by inotropic deposition of crystals alongside the fibres. There is no sharp demarcation between calcified and non-calcified scale regions, a calcification front gradually moving towards newly formed collagen layers. It is felt that fish scales should be considered as calcified derivatives of dermal collagen layers.  相似文献   

9.
The study of the formation and structure of the early teleost scale and its associated cells has been carried out on Hemichromis bimaculatus fry using in toto staining with alizarin and transmission electron microscopy techniques. Results of the study show very rapid scale formation in Hemichromis. The papilla of the scale differentiates a little in advance of the bone scale formation. No epidermal cells are involved in the constitution of the scale pocket made up of scleroblasts. In Hemichromis, as in other teleost scales, the osseous layer is the first one to be secreted by, presumably, only the scleroblasts. Then the scleroblasts specialize in their functions. Superficial ones are involved in the formation of osseous circuli; marginal scleroblasts are responsible for growth in diameter of the scale; while deep scleroblasts allow the scales to thicken owing to the progressive addition of collagen fibrils organized in a “plywood-like” structure which constitutes the fibrillary plate of the scale. Mineralization occurs very rapidly within the osseous layer in the form of hydroxyapatite-like crystal deposits. The fibrillary plate is not yet mineralized in Hemichromis at the stages studied here, but presumably is later. Results obtained in Hemichromis are discussed against similar data available in the literature on teleost scale formation.  相似文献   

10.
The mammalian target of rapamycin (mTOR) pathway regulates stem cell regeneration and differentiation in response to growth factors, nutrients, cellular energetics, and various extrinsic stressors. Inhibition of mTOR activity has been shown to enhance the regenerative potential of pluripotent stem cells. DEPTOR is the only known endogenous inhibitor of all known cellular mTOR functions. We show that DEPTOR plays a key role in maintaining stem cell pluripotency by limiting mTOR activity in undifferentiated embryonic stem cells (ESCs). DEPTOR levels dramatically decrease with differentiation of mouse ESCs, and knockdown of DEPTOR is sufficient to promote ESC differentiation. A strong decrease in DEPTOR expression is also observed during human ESCs differentiation. Furthermore, reduction in DEPTOR level during differentiation is accompanied by a corresponding increase in mTOR complex 1 activity in mouse ESCs. Our data provide evidence that DEPTOR is a novel stemness factor that promotes pluripotency and self-renewal in ESCs by inhibiting mTOR signaling.  相似文献   

11.
Summary To develop a serum-free, chemically definedin vitro organ culture system enabling the study of epithelial-mesenchymal interactions in development and growth of fish dermal skeleton, we investigatedin vitro continuation of scale regeneration in the cichlid fishHemichromis bimaculatus. The culture medium in our system is based on Leibovitz medium (L-15) supplemented with vitamin C, additional amino acids and HEPES. With this basis medium, we examined the effects of all trans-retinoic acid, dexamethasone, and prostaglandin-E2 (PG-E2), factors known to exert an effect on development and growth of teeth and bone in mammalian culture systems, on thein vitro regeneration of scales. These effects were compared with those obtained by supplementation of the basis medium with newborn and fetal calf serum. To evaluate our culture system, the medium that allowed to mimick in the best possible way thein vivo regeneration of scales (i.e., the basis medium plus dexamethasone and PG-E2) was also tested on thein vitro development of teeth in the same fish species. Our serum-free, chemically defined organ culture system enablesin vitro development and growth of both scales and teeth. With this model culture system, it is possible to evaluate thein vitro effects of hormones, growth factors, and other substances on growth and development of dermal skeleton in fish.  相似文献   

12.
Recent work suggests that mammalian retinal ganglion cells may become more like developing ganglion cells in form while regenerating through a peripheral nerve graft. We have injected Lucifer Yellow into regenerating ganglion cells of goldfish to look for similar changes. Within three weeks of injury, we saw dye-coupling to nearby cells, which is a common developmental feature in many species. Dendrites and axons, which in most mature ganglion cells are smooth, became varicose and hairy, like those examined in mammalian development. Secondary axons arose later, not only as side-branches of the primary axon but also from the soma, as in mammalian development and regeneration. Since, in fish, these responses are clearly an intrinsic part of functional regeneration, their equivalence in fish and mammals strengthens the view that a similar regenerative competence may exist in the retinal ganglion cells of all vertebrates.  相似文献   

13.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

14.
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.  相似文献   

15.
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology.Invertebrates like Hydra and planarians exhibit amazing feats of regeneration,in which an entire organism can be restored from minute body segments.Vertebrates like teleost fish and amphibians can also regrow large sections of the body.While this regenerative capacity is greatly attenuated in mammals,there are portions of major organs that remain regenerative.Regardless of the extent,there are common basic strategies to regeneration,including activation of adult stem cells and proliferation of differentiated cells.Here,we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms,including Hydra,planarians,zebrafish and newts as well as in several mammalian organs.  相似文献   

16.
17.
During regeneration, lost functional tissue can, in general, be replaced by different mechanisms, including proliferation of terminally differentiated cells or through differentiation of resident stem cells. It is a well-accepted dogma that the mammalian heart cannot efficiently regenerate upon injury as a consequence of insufficient oxygen supply. This is in sharp contrast to the hearts of adult zebrafish or newts that are able to replace lost ventricular tissue. Novel data indicate that the young murine heart also has the ability to regenerate within the first week after birth using mechanisms apparently quite similar to those observed in fish. This now provides us with a good starting point to identify the molecular mechanisms that led to the loss of the regenerative capacity of the adult mammalian heart. These future studies will also indicate whether it will be possible to reawaken the regenerative capability of cardiomyocytes in the human heart by treatment with selected pharmaceuticals.  相似文献   

18.
Sire JY 《Tissue & cell》1989,21(3):447-462
The elasmoid scales of the cichlid fish, Hemichromis bimaculatus, are localized within dermal pockets, the floors of which are separated from the stratum compactum by uninterrupted cellular sheets, the scale-pocket linings (SPL). TEM study of the fry skin shows that the SPL cells originate from the cell population constituting the dermal papilla of the scale. The upper-layer cells of the papilla, close to the epidermal-dermal junction, differentiate into scleroblasts that, subsequently, form the scale-bag, while the inner-layer cells, close to the stratum compactum, constitute a bi-layered sheet, the SPL. The SPL cells are joined one to another by numerous desmosomes and their cytoplasm is filled principally by microfilaments and free ribosomes. The SPL is also characterized by the presence of a basement membrane on its two faces. When a scale is experimentally pulled off, the scale-forming cells are removed with the dermis and the epidermis covering the free region of the scale, but the SPL is not damaged and epidermal fragments remain at the posterior edge of each scale-pocket. The epithelial cells migrate, from the epidermal fragments, on an extracellular matrix situated on the surface of the SPL, and the wound is closed from 3 to 6 h after scale removal. The scale-regenerating cells differentiate from the upper-layer cells of the SPL, initially in the central region of the scale-pocket where epithelial cells first contacted the SPL surface. Consequently, it is shown that scale-forming cells and scale-regenerating cells are derived from the same ontogenetic population, the dermal papilla.  相似文献   

19.
This is a review of the experimental studies on the vertebrate retina neurogenesis. Data are provided on the distribution and localization of multipotent and stem cells in the developing, definitive, and regenerating eye. At the early stages of retina development, the neuroepithelial cells divide synchronously, thus leading to the accumulation of a certain number of the retinal rudiment cells. Synchronous divisions precede the asynchronous ones, when the differentiation of the retinal cells is initiated. The neuroepithelial cells are multipotent: the neuroblast is a source of the cells of different types, for example, neurons and glial cells. The proliferating multipotent cells are preserved in the ciliary-terminal zone of the retina of amphibians, fish, and chickens during their entire life. The differentiated pigment epithelium cells also proliferate in this area of the eye. The multipotent cells of the retinal ciliary-terminal zone and cells of the pigment epithelium in the eye periphery provide for the growth of amphibian and fish eyes during the entire life of these animals. In adult mammals, clonable and self-renewable cells were found among the pigmented differentiated cells in the ciliary folds. In a culture, the stem cells form spheroids consisting of depigmented and proliferating cells. Upon transdifferentiation, the cells of spheroids form rods, bipolar cells, and ganglion and glial cells, thus suggesting the possible regenerative potencies of the stem cells in the ciliary body of the mammalian eye. The main event of retinal regeneration in newts is the transdifferentiation of the pigment epithelium cells. The results of comparative analysis suggest that the stem cells of the ciliary body in the mammalian eye and pigment epithelium cells in lower vertebrates exhibit similar potencies and use similar mechanisms during the formation of the cells of the neural series.  相似文献   

20.
In teleosts, the embryonic fin fold consists of a peridermis, an underlying epidermis and a small number of mesenchymal cells. Beginning from such a simple structure, the fin skeletons, including the proximal and distal radials and lepidotrichia (finrays), develop in the dorsal fin fold at the larval stage. Their process of skeletogenesis and embryonic origin are unclear. Using flounder larvae, we report the differentiation process for chondrocytes and scleroblasts prior to fin skeletogenesis and the effects of retinoic acid (RA) on it. In early larvae, the mesenchymal cells grow between the epidermis and spinal cord to form a line of periodical condensations, which are proximal radial primordia, to produce chondrocytes. The prescleroblasts, which ossify the proximal radial cartilages, differentiate in the mesenchymal cells remaining between the cartilages. Then, mesenchymal condensations occur between the distal ends of the proximal radials, forming distal radial primordia, to produce chondrocytes. Simultaneously, condensations occur between the distal radial primordia and peridermis, which are lepidotrichia primordia, to produce prescleroblasts. Exogenous RA specifically inhibits the mesenchymal condensation prior to the proximal radial formation together with the down-regulation of sonic hedgehog (shh) and patched (pta) expression, resulting in the loss of proximal radials. Thus, it was indicated that differentiation of the precursor cells of radials and lepidotrichia begins in the proximal part of the fin fold and that the initial mesenchymal condensation prior to the proximal radial formation is highly susceptible to the effects of RA. Lepidotrichia formation does not occur where proximal radials are absent, indicating that lepidotrichia differentiation requires interaction with the radial cartilages. To examine the suggestion that neural crest cells contribute to the medial fin skeletons, we localized the HNK-1 positive cells in flounder embryos and slug and msxb-positive cells in pufferfish, Fugu rubripes, embryos. That the positive cells commonly arrive at the proximal part of the fin fold does not contradict the suggestion, but their final destiny as radial chondrocytes or lepidotrichia scleroblasts, should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号