首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Myeloid-derived suppressor cells (MDSC) accumulate in patients and animals with cancer where they mediate systemic immune suppression and obstruct immune-based cancer therapies. We have previously demonstrated that inflammation, which frequently accompanies tumor onset and progression, increases the rate of accumulation and the suppressive potency of MDSC. To determine how inflammation enhances MDSC levels and activity we used mass spectrometry to identify proteins produced by MDSC induced in highly inflammatory settings. Proteomic pathway analysis identified the Fas pathway and caspase network proteins, leading us to hypothesize that inflammation enhances MDSC accumulation by increasing MDSC resistance to Fas-mediated apoptosis. The MS findings were validated and extended by biological studies. Using activated caspase 3 and caspase 8 as indicators of apoptosis, flow cytometry, confocal microscopy, and Western blot analyses demonstrated that inflammation-induced MDSC treated with a Fas agonist contain lower levels of activated caspases, suggesting that inflammation enhances resistance to Fas-mediated apoptosis. Resistance to Fas-mediated apoptosis was confirmed by viability studies of MDSC treated with a Fas agonist. These results suggest that an inflammatory environment, which is frequently present in tumor-bearing individuals, protects MDSC against extrinsic-induced apoptosis resulting in MDSC with a longer in vivo half-life, and may explain why MDSC accumulate more rapidly and to higher levels in inflammatory settings.  相似文献   

2.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

3.
The death receptor Fas and its physiological ligand (FasL) regulate apoptosis of cancerous cells, thereby functioning as a critical component of the host cancer immunosurveillance system. To evade Fas-mediated apoptosis, cancer cells often downregulate Fas to acquire an apoptosis-resistant phenotype, which is a hallmark of metastatic human colorectal cancer. Therefore, targeting Fas resistance is of critical importance in Fas-based cancer therapy and immunotherapy. In this study, we demonstrated that epigenetic inhibitors decitabine and vorinostat cooperate to upregulate Fas expression in metastatic human colon carcinoma cells. Decitabine also upregulates BNIP3 and Bik expression, whereas vorinostat decreased Bcl-x(L) expression. Altered expression of Fas, BNIP3, Bik, and Bcl-x(L) resulted in effective sensitization of the metastatic human colon carcinoma cells to FasL-induced apoptosis. Using an experimental metastasis mouse model, we further demonstrated that decitabine and vorinostat cooperate to suppress colon carcinoma metastasis. Analysis of tumor-bearing lung tissues revealed that a large portion of tumor-infiltrating CD8(+) T cells are FasL(+), and decitabine and vorinostat-mediated tumor-suppression efficacy was significantly decreased in Fas(gld) mice compared with wild-type mice, suggesting a critical role for FasL in decitabine and vorinostat-mediated tumor suppression in vivo. Consistent with their function in apoptosis sensitization, decitabine and vorinostat significantly increased the efficacy of CTL adoptive transfer immunotherapy in an experimental metastasis mouse model. Thus, our data suggest that combined modalities of chemotherapy to sensitize the tumor cell to Fas-mediated apoptosis and CTL immunotherapy is an effective approach for the suppression of colon cancer metastasis.  相似文献   

4.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

5.
CD44: functional relevance to inflammation and malignancy   总被引:8,自引:0,他引:8  
CD44 is a principal cell surface receptor for hyaluronan, a major component of extracellular matrices. Cells are surrounded by and encounter matrix in vivo, which in turn serves a variety of cell functions through the direct adhesion via their receptors. CD44 communicates cell-matrix interactions into the cell via "outside-in signaling" and has an important role in biological activities. The interaction of CD44 with fragmented hyaluronan on rheumatoid synovial cells induces expression of VCAM-1 and Fas on the cells, which leads to Fas-mediated apoptosis of synovial cells by the interaction of T cells bearing FasL. On the other hand, engagement of CD44 on tumor cells derived from lung cancer reduces Fas expression and Fas-mediated apoptosis, resulting in less susceptibility of the cells to CTL-mediated cytotoxicity through Fas-FasL pathway. Thus, although the CD44-mediated signaling differs among cells and circumstances, we here propose the functional role of CD44 in inflammatory processes and tumor susceptibility and the rational design of future therapeutic strategies including the exploitation of CD44-mediated pathway in vivo.  相似文献   

6.
The influence of a human CD4(+) T cell response in anti-carcinoma immune reactions remains largely uncharacterized. Here, we made use of a major histocompatibility complex (MHC) class-II-restricted, anti-ras oncogene-specific CD4(+) T cell line produced previously in vivo from a patient with metastatic carcinoma in a peptide-based phase I trial. Using this patient-derived T cell line as a potentially relevant cell type, we examined the consequences of the anti-carcinoma CD4(+) T cell response, with emphasis on specific lymphokines potentially important for the regulation of Fas/Fas ligand (FasL) interactions. Antigen (Ag)-specific CD4(+) T cells produced substantial amounts of IFN-gamma following recognition of MHC class-II-matched Ag-presenting cells expressing the cognate peptide. The IFN-gamma promoted significant upregulation of Fas on the surface of colon carcinoma cells and sensitized these targets to Fas-mediated apoptosis and Ag-specific CD8(+) cytotoxic T lymphocyte (CTL)-mediated lysis involving a Fas-based effector mechanism. Moreover, Ag-stimulated CD4(+) T cells secreted soluble FasL (sFasL), which induced the death of TNF-resistant/refractory colon, breast, and ovarian carcinoma cells. Interestingly, although CD4(+)-derived sFasL expressed cytotoxic activity, the recovery of carcinoma cells which resisted Fas-mediated lysis displayed enhanced metastatic ability in vivo, compared with the unselected parental population, in an athymic mouse model. Thus, a tumor-specific CD4(+) T cell response may have both positive and negative consequences in human carcinoma via the production of proinflammatory cytokines such as IFN-gamma and/or sFasL that may (1) improve or facilitate CTL-target engagement, contact-independent effector mechanisms, and the overall lytic outcome and (2) potentially select for Fas-resistant tumor cells that escape immune destruction, which may thus impact the metastatic process.  相似文献   

7.
8.
Inducible NO synthase (iNOS) is a hallmark of chronic inflammation that is also overexpressed in melanoma and other cancers. Whereas iNOS is a known effector of myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, its pivotal position at the interface of inflammation and cancer also makes it an attractive candidate regulator of MDSC recruitment. We hypothesized that tumor-expressed iNOS controls MDSC accumulation and acquisition of suppressive activity in melanoma. CD11b(+)GR1(+) MDSC derived from mouse bone marrow cells cultured in the presence of MT-RET-1 mouse melanoma cells or conditioned supernatants expressed STAT3 and reactive oxygen species (ROS) and efficiently suppressed T cell proliferation. Inhibition of tumor-expressed iNOS with the small molecule inhibitor L-NIL blocked accumulation of STAT3/ROS-expressing MDSC, and abolished their suppressive function. Experiments with vascular endothelial growth factor (VEGF)-depleting Ab and recombinant VEGF identified a key role for VEGF in the iNOS-dependent induction of MDSC. These findings were further validated in mice bearing transplantable MT-RET-1 melanoma, in which L-NIL normalized elevated serum VEGF levels; downregulated activated STAT3 and ROS production in MDSC; and reversed tumor-mediated immunosuppression. These beneficial effects were not observed in iNOS knockout mice, suggesting L-NIL acts primarily on tumor- rather than host-expressed iNOS to regulate MDSC function. A significant decrease in tumor growth and a trend toward increased tumor-infiltrating CD8(+) T cells were also observed in MT-RET transgenic mice bearing spontaneous tumors. These data suggest a critical role for tumor-expressed iNOS in the recruitment and induction of functional MDSC by modulation of tumor VEGF secretion and upregulation of STAT3 and ROS in MDSC.  相似文献   

9.
Regulation of Fas ligand-induced apoptosis by TNF.   总被引:7,自引:0,他引:7  
Fas ligand (FasL, CD95L) expression helps control inflammatory reactions in immune privileged sites such as the eye. Cellular activation is normally required to render lymphoid cells sensitive to FasL-induced death; however, both activated and freshly isolated Fas(+) lymphoid cells are efficiently killed in the eye. Thus, we examined factors that might regulate cell death in the eye. TNF levels rapidly increased in the eye after the injection of lymphoid cells, and these cells underwent apoptosis within 24 h. Coinjection of anti-TNF Ab with the lymphoid cells blocked this cell death. Furthermore, TNFR2(-/-) T cells did not undergo apoptosis in the eyes of normal mice, while normal and TNFR1(-/-) T cells were killed by apoptosis. In vitro, TNF enhanced the Fas-mediated apoptosis of unactivated T cells through decreased intracellular levels of FLIP and increased production of the pro-apoptotic molecule Bax. This effect was mediated through the TNFR2 receptor. In vivo, intracameral injection of normal or TNFR1(-/-) 2,4,6-trinitrophenyl-coupled T cells into normal mice induced immune deviation, but TNFR2(-/-) 2,4,6-trinitrophenyl-coupled T cells were ineffective. Collectively, our results provide evidence of a role for the p75 TNFR in cell death in that TNF signaling through TNFR2 sensitizes lymphoid cells for Fas-mediated apoptosis. We conclude that there is complicity between apoptosis and elements of the inflammatory response in controlling lymphocyte function in immune privileged sites.  相似文献   

10.
We reported recently that the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) protect CD4+ T cells against Ag-induced apoptosis by down-regulating the expression of Fas ligand (FasL). Because the cytotoxic activity of CD8+ CTLs is mediated through two mechanisms, which involve the perforin/granzyme and the FasL/Fas pathways, in this study we investigated the effects of VIP/PACAP on the generation and activity of allogeneic CTLs, of CD8+ T1 and T2 effector cells and of alloreactive peritoneal exudate cytotoxic T cells (PEL) generated in vivo. VIP/PACAP did not affect perforin/granzyme-mediated cytotoxicity, perforin gene expression, or granzyme B enzymatic activity, but drastically inhibited FasL/Fas-mediated cytotoxicity against allogeneic or syngeneic Fas-bearing targets. VIP/PACAP inhibit CTL generation, but not the activity of competent CTLs. The inhibition is associated with a profound down-regulation of FasL expression, and these effects are mediated through both VPAC1 and VPAC2 receptors. VIP/PACAP inhibit the FasL/Fas-mediated cytotoxicity of T1 effectors and do not affect T2 cytotoxicity, which is entirely perforin/granzyme mediated. Similar effects were observed in vivo. Both the FasL/Fas-mediated cytotoxicity and FasL expression of cytotoxic allogeneic PELs generated in vivo in the presence of VIP or PACAP were significantly reduced. We conclude that, similar to their effect on CD4+ T cells, the two structurally related neuropeptides inhibit FasL expression in CD8+ cytotoxic T cells and the subsequent lysis of Fas-bearing target cells.  相似文献   

11.
12.
The control of B cell expansion has been thought to be solely regulated by T lymphocytes. We show in this study that Trypanosoma cruzi infection induces up-regulation of both Fas and Fas ligand (FasL) molecules on B cells and renders them susceptible to B cell-B cell killing (referred to as fratricide throughout this paper) mediated via Fas/FasL. Moreover, by in vivo administration of anti-FasL blocking mAb we demonstrate that Fas-mediated B cell apoptosis is an ongoing process during this parasitic infection. We also provide evidence that B cells that have switched to IgG isotype are the preferential targets of B cell fratricide. More strikingly, this death pathway selectively affects IgG(+) B cells reactive to parasite but not self Ags. Parasite-specific but not self-reactive B cells triggered during this response are rescued after either in vitro or in vivo FasL blockade. Fratricide among parasite-specific IgG(+) B lymphocytes could impair the immune control of T. cruzi and possibly other chronic protozoan parasites. Our results raise the possibility that the blockade of Fas/FasL interaction in the B cell compartment of T. cruzi-infected mice may provide a means for enhancing antiparasitic humoral immune response without affecting host tolerance.  相似文献   

13.
Macrophage death is an important feature of atherosclerosis, but the cellular mechanism for this process is largely unknown. There is increasing interest in cellular free cholesterol (FC) excess as an inducer of lesional macrophage death because macrophages accumulate large amounts of FC in vivo, and FC loading of macrophages in culture causes cell death. In this study, a cell culture model was used to explore the cellular mechanisms involved in the initial stages of FC-induced macrophage death. After 9 h of FC loading, some of the macrophages exhibited externalization of phosphatidylserine and DNA fragmentation, indicative of an apoptotic mechanism. Incubation of the cells with Z-DEVD-fluoromethylketone blocked these events, indicating dependence upon effector caspases. Macrophages from mice with mutations in either Fas or Fas ligand (FasL) demonstrated substantial resistance to FC-induced apoptosis, and FC-induced death in wild-type macrophages was blocked by an anti-FasL antibody. FC loading had no effect on the expression of cell-surface Fas but caused a small yet reproducible increase in cell-surface FasL. To determine the physiological significance of this finding, unloaded and FC-loaded Fas-deficient macrophages, which can only present FasL, were compared for their ability to induce apoptosis in secondarily added Fas-bearing macrophages. The FC-loaded macrophages were much more potent inducers of apoptosis than the unloaded macrophages, and this effect was almost completely blocked by an inhibitory anti-FasL antibody. In summary, during the early stages of FC loading of macrophages, a fraction of cells exhibited biochemical changes that are indicative of apoptosis. An important part of this event is FC-induced activation of FasL that leads to Fas-mediated apoptosis. In light of recent in vivo findings that show that apoptotic macrophages in atherosclerotic lesions express both Fas and FasL, we present a cellular model of Fas-mediated death in lesional foam cells.  相似文献   

14.
Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1beta, IL-6, and PGE(2) induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK cell activation, and by polarizing immunity toward a tumor-promoting type 2 phenotype. We now show that this population of immature myeloid cells induced by a given tumor share a common phenotype regardless of their in vivo location (bone marrow, spleen, blood, or tumor site), and that Gr1(high)CD11b(high)F4/80(-)CD80(+)IL4Ralpha(+/-)Arginase(+) MDSC are induced by the proinflammatory proteins S100A8/A9. S100A8/A9 proteins bind to carboxylated N-glycans expressed on the receptor for advanced glycation end-products and other cell surface glycoprotein receptors on MDSC, signal through the NF-kappaB pathway, and promote MDSC migration. MDSC also synthesize and secrete S100A8/A9 proteins that accumulate in the serum of tumor-bearing mice, and in vivo blocking of S100A8/A9 binding to MDSC using an anti-carboxylated glycan Ab reduces MDSC levels in blood and secondary lymphoid organs in mice with metastatic disease. Therefore, the S100 family of inflammatory mediators serves as an autocrine feedback loop that sustains accumulation of MDSC. Since S100A8/A9 activation of MDSC is through the NF-kappaB signaling pathway, drugs that target this pathway may reduce MDSC levels and be useful therapeutic agents in conjunction with active immunotherapy in cancer patients.  相似文献   

15.
16.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

17.
18.
Suppression of tumor-specific T cell sensitization is a predominant mechanism of tumor escape. To identify tumor-induced suppressor cells, we transferred spleen cells from mice bearing progressive MCA205 sarcoma into sublethally irradiated mice. These mice were then inoculated subdermally with tumor cells to stimulate T cell response in the tumor-draining lymph-node (TDLN). Tumor progression induced splenomegaly with a dramatic increase (22.1%) in CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) compared with 2.6% of that in normal mice. Analyses of therapeutic effects by the adoptive immunotherapy revealed that the transfer of spleen cells from tumor-bearing mice severely inhibited the generation of tumor-immune T cells in the TDLN. We further identified MDSC to be the dominant suppressor cells. However, cells of identical phenotype from normal spleens lacked the suppressive effects. The suppression was independent of CD4(+)CD25(+) regulatory T cells. Intracellular IFN-gamma staining revealed that the transfer of MDSC resulted in a decrease in numbers of tumor-specific CD4(+) and CD8(+) T cells. Transfer of MDSC from MCA207 tumor-bearing mice also suppressed the MCA205 immune response indicating a lack of immunologic specificity. Further analyses demonstrated that MDSC inhibited T cell activation that was triggered either by anti-CD3 mAb or by tumor cells. However, MDSC did not suppress the function of immune T cells in vivo at the effector phase. Our data provide the first evidence that the systemic transfer of MDSC inhibited and interfered with the sensitization of tumor-specific T cell responses in the TDLN.  相似文献   

19.
Memory T cells respond in several functionally different ways from naive T cells and thus function as efficient effector cells. In this study we showed that primed T cells were more resistant to Fas-mediated activation-induced cell death (AICD) than naive T cells using OVA-specific TCR transgenic DO10 mice and Fas-deficient DO10 lpr/lpr mice. We found that apoptosis was efficiently induced in activated naive T cells at 48 and 72 h after Ag restimulation (OVA peptide; 0.3 and 3 microM), whereas apoptosis was not significantly increased in activated primed T cells at 24-72 h after Ag restimulation. We further showed that the resistance to AICD in primed T cells was due to the decreased sensitivity to apoptosis induced by Fas-mediated signals, but TCR-mediated signaling equally activated both naive and primed T cells to induce Fas and Fas ligand expressions. Furthermore, we demonstrated that primed T cells expressed higher levels of Fas-associated death domain-like IL-1beta-converting enzyme inhibitory protein (FLIP), an inhibitor of Fas-mediated apoptosis, at 24-48 h after Ag restimulation than naive T cells. In addition, Bcl-2 expression was equally observed between activated naive and primed T cells after Ag restimulation. Thus, these results indicate that naive T cells are sensitive to Fas-mediated AICD and are easily deleted by Ag restimulation, while primed/memory T cells express higher levels of FLIP after Ag restimulation, are resistant to Fas-mediated AICD, and thus function as efficient effector cells for a longer period.  相似文献   

20.
Traditional wisdom holds that intact immune responses, such as immune surveillance or immunoediting, are required for preventing and inhibiting tumor development; but recent evidence has also indicated that unresolved immune responses, such as chronic inflammation, can promote the growth and progression of cancer. Within the immune system, cytotoxic CD8(+) and CD4(+) Th1 T cells, along with their characteristically produced cytokine IFN-γ, function as the major anti-tumor immune effector cells, whereas tumor associated macrophages (TAM) or myeloid-derived suppressive cells (MDSC) and their derived cytokines IL-6, TNF, IL-1β and IL-23 are generally recognized as dominant tumor-promoting forces. However, the roles played by Th17 cells, CD4(+) CD25(+) Foxp3(+) regulatory T lymphocytes and immunoregulatory cytokines such as TGF-β in tumor development and survival remain elusive. These immune cells and the cellular factors produced from them, including both immunosuppressive and inflammatory cytokines, play dual roles in promoting or discouraging cancer development, and their ultimate role in cancer progression may rely heavily on the tumor microenvironment and the events leading to initial propagation of carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号