首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Thiel 《Journal of bacteriology》1996,178(15):4493-4499
The filamentous cyanobacterium Anabaena variabilis fixes nitrogen in the presence of vanadium (V) and in the absence of molybdenum (Mo), using a V-dependent nitrogenase (V-nitrogenase) encoded by the vnfDGK genes. Downstream from these genes are two genes that are similar to the vnfEN genes of Azotobacter vinelandii. Like the vnfDGK genes, the vnfEN genes were transcribed in the absence of Mo, whether or not V was present. A mutant with an insertion in the vnfN gene lacked V-nitrogenase activity; thus, the vnfEN genes were essential for the V-nitrogenase system in A. variabilis. Growth and acetylene reduction assays with wild-type and mutant strains suggested that the V-nitrogenase reduced dinitrogen better than acetylene. The similarity of the vnfEN genes of A. variabilis and A. vinelandii was not strong. The vnfEN genes of A. variabilis showed greater similarity to the vnfDK genes just upstream than to the A. vinelandii vnfEN genes. Sequence comparisons provide support for the idea that if the vnf genes were transferred laterally among bacterial strains, the vnf cluster was not transferred intact. It appears likely that the structural genes were transferred before a duplication event led to the evolution of the vnfEN genes independently in the two strains. The divergence of the vnfEN genes from the vnfDK genes suggests that this duplication, and hence the transfer of vnf genes, was an ancient event.  相似文献   

2.
Molybdenum is an essential component of the cofactors of many metalloenzymes including nitrate reductase and Mo-nitrogenase. The cyanobacterium Anabaena variabilis ATCC 29413 uses nitrate and atmospheric N2 as sources of nitrogen for growth. Two of the three nitrogenases in this strain are Mo-dependent enzymes, as is nitrate reductase; thus, transport of molybdate is important for growth of this strain. High-affinity transport of molybdate in A. variabilis was mediated by an ABC-type transport system encoded by the products of modA and modBC. The modBC gene comprised a fused orf including components corresponding to modB and modC of Escherichia coli. The deduced ModC part of the fused gene lacked a recognizable molybdate-binding domain. Expression of modA and modBC was induced by starvation for molybdate. Mutants in modA or modBC were unable to grow using nitrate or Mo-nitrogenase. Growth using the alternative V-nitrogenase was not impaired in the mutants. A high concentration of molybdate (10 microM) supported normal growth of the modBC mutant using the Nif1 Mo-nitrogenase, indicating that there was a low-affinity molybdate transport system in this strain. The modBC mutant did not detectably transport low concentrations of 99Mo (molybdate), but did transport high concentrations. However, such transport was observed only after cells were starved for sulphate, suggesting that an inducible sulphate transport system might also serve as a low-affinity molybdate transport system in this strain.  相似文献   

3.
4.
Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.  相似文献   

5.
Heterocyst-forming filamentous cyanobacteria, such as Anabaena variabilis ATCC 29413, require molybdenum as a component of two essential cofactors for the enzymes nitrate reductase and nitrogenase. A. variabilis efficiently transported (99)Mo (molybdate) at concentrations less than 10(-9) M. Competition experiments with other oxyanions suggested that the molybdate-transport system of A. variabilis also transported tungstate but not vanadate or sulfate. Although tungstate was probably transported, tungsten did not function in place of molybdenum in the Mo-nitrogenase. Transport of (99)Mo required prior starvation of the cells for molybdate, suggesting that the Mo-transport system was repressed by molybdate. Starvation, which required several generations of growth for depletion of molybdate, was enhanced by growth under conditions that required synthesis of nitrate reductase or nitrogenase. These data provide evidence for a molybdate storage system in A. variabilis. NtcA, a regulatory protein that is essential for synthesis of nitrate reductase and nitrogenase, was not required for transport of molybdate. The closely related strain Anabaena sp. PCC 7120 transported (99)Mo in a very similar way to A. variabilis.  相似文献   

6.
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by the enzyme encoded by the nif genes but also by the enzyme encoded by the vnf genes. Neither NifS nor NifU was essential for nitrogen fixation in A. variabilis.  相似文献   

7.
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic.  相似文献   

8.
Oxygen-dependent proton efflux in cyanobacteria (blue-green algae).   总被引:3,自引:1,他引:2       下载免费PDF全文
The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H+/e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H+/e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. We suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane.  相似文献   

9.
A thalium chloride-resistant (TlCl(r)) mutant strain and a sodium chloride-resistant (NaCl(r)) mutant strain of the diazotrophic cyanobacterium Anabaena variabilis have been isolated by spontaneous and chemical mutagenesis by using TlCl, a potassium (K(+)) analog, and nitrosoguanidine (NTG), respectively. The TlCl(r) mutant strain was found to be defective in K(+) transport and showed resistance against 10 microM TlCl. However, it also showed sensitivity against NaCl (LD(50), 50 m M). In contrast, neither wild-type A. variabilis nor its NaCl(r) mutant strain could survive in the presence of 10 microM TlCl and died even at 1 microM TlCl. The TlCl(r) mutant strain exhibited almost negligible K(+) uptake, indicating the lack of a K(+) uptake system. High K(+) uptake was, however, observed in the NaCl(r) mutant strain, reflecting the presence of an active K(+) uptake system in this strain.DCMU, an inhibitor of PS II, inhibited the K(+) uptake in wild-type A. variabilis and its TlCl(r) and NaCl(r) mutant strains, suggesting that K(+) uptake in these strains is an energy-dependent process and that energy is derived from photophosphorylation. This contention is further supported by the inhibition of K(+) uptake under dark conditions. Furthermore, the inhibition of K(+) uptake by KCN, DNP, and NaN(3) also suggests the involvement of oxidative phosphorylation in the regulation of an active K(+) uptake system.The whole-cell protein profile of wild-type A. variabilis and its TlCl(r) and NaCl(r) mutant strains growing in the presence of 50 m M KCl was made in the presence and absence of NaCl. Lack of transporter proteins in TlCl(r) mutant strain suggests that these proteins are essentially required for the active transport and accumulation of K(+) and make this strain NaCl sensitive. In contrast, strong expression of the transporter proteins in NaCl(r) mutant strain and its weak expression in wild-type A. variabilis is responsible for their resistance and sensitivity to NaCl, respectively. Therefore, it appears that the increased salt tolerance of the NaCl(r) mutant strain was owing to increased K(+) uptake and accumulation, whereas the salt sensitivity of the TlCl(r) mutant strain was owing to the lack of K(+) uptake and accumulation.  相似文献   

10.
Vanadate, a potent inhibitor of plasma membrane ATPases, is taken up by Neurospora crassa only when cells are growing in alkaline medium and starving for phosphate. The appearance of a vanadate uptake system (Km = 8.2 microM; Vmax = 0.15 mmol/min per liter of cell water) occurs under the same conditions required for derepression of a high-affinity phosphate transport system. Phosphate is a competitive inhibitor of vanadate uptake, and vanadate is a competitive inhibitor of phosphate uptake. Furthermore, mutant strains which are either partially constitutive or non-derepressible for the high-affinity phosphate transport system are also partially constitutive or non-derepressible for vanadate uptake. These data indicate that vanadate enters the cell via phosphate transport system II.  相似文献   

11.
T Thiel 《Journal of bacteriology》1993,175(19):6276-6286
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis.  相似文献   

12.
T Thiel 《Journal of bacteriology》1988,170(3):1143-1147
Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent Ki values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.  相似文献   

13.
Several amino acids which are conserved in cation-pumping ATPases with phosphorylated intermediate have been mutagenized in the yeast plasma membrane H+-ATPase. The mutant genes have been selectively expressed in a yeast strain where the wild-type ATPase is only expressed in galactose medium. A series of mutants with decreasing levels of activity demonstrates that the ATPase is rate-limiting for growth and that decreased ATPase activity correlates with decreased intracellular pH. Enzymatic and transport studies of mutant ATPases indicate that (a) Lys474 is the target for the inhibitor fluorescein 5'-isothiocyanate and this residue can be replaced by either arginine or histidine with partial retention of activity; (b) the sensitivity to inhibition by vanadate is affected by the mutations Thr231----Gly, Cys376----Leu, Lys379----Gln and Asp634----Asn; (c) the mutation Ser234----Ala causes uncoupling between ATP hydrolysis and proton transport and reduces the ATP content of the cells; (d) the mutation Asp730----Asn, which affects a polar residue conserved in hydrophobic stretches of H+-ATPases, abolishes ATPase activity and proton transport but not the formation of a phosphorylated intermediate.  相似文献   

14.
Vanadate is known to have an insulin-like action which stimulates sugar transport in some systems like adipocytes and muscle cells, but in other systems it inhibits sugar transport by decreasing the activity of (Na+ +K+)-ATPase. To evaluate whether these two opposing actions may influence sugar transport across the intestine, we studied the effects of acute and chronic vanadate administration on the uptake of glucose, galactose, and 3-O-methylglucose in isolated rat intestinal cells. The sugar uptake measurements were also coupled by determinations of rubidium-86 uptake as a measure of the activity of the Na-K pump. Both acute and chronic vanadate administration reduced rubidium uptake by the cells but the reduction did not uniformly influence the uptake of the three sugars in question which were stimulated by the acute exposure of the cells to vanadate. Glucose uptake was also stimulated by chronic vanadate administration, but the uptakes of galactose and 3-O-methylglucose were respectively unaffected or inhibited by chronic vanadate. The findings suggest that the effect of vanadate on sugar transport is dependent on the net difference between two actions of vanadate: (i) stimulation of a receptor site (possibly an insulin receptor site) in the intestinal cell membrane and (ii) inhibition of the Na-K pump. During acute vanadate exposure, the stimulation of the receptor site was very likely a dominant feature which overwhelms the inhibition of the pump. Chronic exposure to vanadate led, on the other hand, to only a limited degree of stimulation of the receptor site and the inhibition of the Na-K pump became evident in the uptake measurements of galactose and 3-O-methyl-glucose. Glucose uptake, however, was stimulated by chronic vanadate ingestion due, very likely, to an increase in the metabolism of this sugar which occurred only with prolonged exposure of the rat intestine to vanadate.  相似文献   

15.
This study demonstrates the involvement of phosphotyrosine phosphatases on the activity and regulation of GSH ATP-dependent transport system that we have previously identified in NIH3T3 fibroblasts. This is shown by the fact that increases of the initial rate of GSH uptake were measured in NIH3T3 overexpressing a synthetic gene coding for a low-Mr-phosphotyrosine protein phosphatase (LMW-PTP), while decreases were obtained in NIH3T3 overexpressing the phosphatase inactive mutant (LMW-C12SPTP), with respect to NIH3T3neo. Moreover, these results have been confirmed by experiments performed in the same cells by vanadate, and H2O2 treatment on both GSH transport and mediated passive transport of glucose. A possible regulation of this transport system by platelet-derived growth factor receptor (PDGFr) with tyrosine kinase activity is also demonstrated. Moreover, these data show a relationship among GSH, PDGFr and phosphotyrosine phosphatase activity, and suggest a role of GSH transport systems on the cell proliferation process.  相似文献   

16.
17.
Sodium vanadate has several insulin-like effects. To determine whether vanadate acts via the insulin receptor, I investigated the effect of vanadate on glucose transport (2-deoxyglucose uptake) in adipocytes that had been treated to decrease the number of insulin receptors. Trypsin (100 micrograms/ml) caused greater than 95% loss of 125I-insulin binding and rendered glucose transport resistant to both insulin and an anti-insulin-receptor antibody. However, vanadate caused an 8-fold increase in the transport rate [EC50 (concn. giving 50% of maximum effect) 0.2 mM] in both control and trypsin-treated cells, demonstrating that the insulin receptor does not have to be intact for vanadate to stimulate glucose transport. Insulin receptors were depleted by treatment of adipocytes with insulin (100 ng/ml) in the presence of Tris (which blocks receptor recycling). A 2 h treatment caused 60% loss of receptors, and a shift to the right in the dose-response curve for insulin stimulation of glucose transport (EC50 0.3 ng of insulin/ml in controls, 1.2 ng/ml in treated cells). The response to vanadate was again unaffected. Treatment with insulin for 4 h caused a 67% decrease in insulin binding and, in addition to the rightward shift in the insulin dose-response curve, a decrease in basal and maximal transport rates (which cannot be explained by decreased insulin receptor number). The EC50 of vanadate was again equal in control and treated cells, but glucose transport in the presence of a maximally effective concentration of vanadate (1 mM) was decreased. I conclude that the effect of vanadate on glucose transport is independent of the insulin receptor. Induction of a post-receptor defect (which may be a decrease in the total number of cellular glucose transporters) by prolonged exposure to insulin decreases the potency of a maximally effective concentration of vanadate. The findings demonstrate that vanadate stimulates glucose transport by an effect at a level distal to the insulin receptor.  相似文献   

18.
DNA sequencing of the region upstream from the Azotobacter vinelandii operon (modEABC) that contains genes for the molybdenum transport system revealed an open reading frame (modG) encoding a hypothetical 14-kDa protein. It consists of a tandem repeat of an approximately 65-amino-acid sequence that is homologous to Mop, a 7-kDa molybdopterin-binding protein of Clostridium pasteurianum. The tandem repeat is similar to the C-terminal half of the product of modE. The effects of mutations in the mod genes provide evidence for distinct high- and low-affinity Mo transport systems and for the involvement of the products of modE and modG in the processing of molybdate. modA, modB, and modC, which encode the component proteins of the high-affinity Mo transporter, are required for 99Mo accumulation and for the nitrate reductase activity of cells growing in medium with less than 10 microM Mo. The exchange of accumulated 99Mo with nonradioactive Mo depends on the presence of modA, which encodes the periplasmic molybdate-binding protein. 99Mo also exchanges with tungstate but not with vanadate or sulfate. modA, modB, and modC mutants exhibit nitrate reductase activity and 99Mo accumulation only when grown in more than 10 microM Mo, indicating that A. vinelandii also has a low-affinity Mo uptake system. The low-affinity system is not expressed in a modE mutant that synthesizes the high-affinity Mo transporter constitutively or in a spontaneous tungstate-tolerant mutant. Like the wild type, modG mutants only show nitrate reductase activity when grown in > 10 nM Mo. However, a modE modG double mutant exhibits maximal nitrate reductase activity at a 100-fold lower Mo concentration. This indicates that the products of both genes affect the supply of Mo but are not essential for nitrate reductase cofactor synthesis. However, nitrogenase-dependent growth in the presence or absence of Mo is severely impaired in the double mutant, indicating that the products of modE and modG may be involved in the early steps of nitrogenase cofactor biosynthesis in A. vinelandii.  相似文献   

19.
Type I interferon (IFN)-dependent inhibition of cell growth can occur either in the absence or presence of apoptosis. The mechanisms that determine whether or not cells undergo apoptosis after exposure to IFN-alpha are not clear. This study shows that a variety of cell lines that display growth inhibition but not apoptosis in response to IFN-alpha will undergo programmed cell death when low concentrations of the protein-tyrosine phosphatase inhibitor vanadate are added with IFN-alpha. In contrast, the combination of tumor necrosis factor-alpha with vanadate did not trigger apoptosis in these cells. Caspase-3 activity was detected only in cells exposed to IFN-alpha and vanadate but not to IFN-alpha or vanadate alone. The ability of IFN-alpha and vanadate to induce apoptosis did not require expression of p53 and was blocked by N-acetyl-l-cysteine. Activation of the Jak/Stat pathway and expression of IFN-inducible genes was not altered by incubation of cells with IFN-alpha and vanadate compared with IFN-alpha alone. However, mutant cells lacking Stat1, Stat2, Jak1, or Tyk2, or cells expressing kinase inactive Jak1 or Tyk2 did not undergo apoptosis in the presence of IFN-alpha and vanadate. These results suggest that IFN-alpha stimulation of Stat-dependent genes is necessary, but not sufficient, for this cytokine to induce apoptosis. Another signaling cascade that involves the activity of a protein-tyrosine phosphatase and/or the generation of reactive oxygen species may play an important role in promoting IFN-alpha-induced apoptosis.  相似文献   

20.
We have constructed a strain of Azotobacter vinelandii which has deletions in the genes for both the molybdenum (Mo) and vanadium (V) nitrogenases. This strain fixed nitrogen in medium that did not contain Mo or V. Growth and nitrogenase activity were inhibited by Mo and V. In highly purified medium, growth was limited by iron. Addition of other metals (Co, Cr, Cu, Mn, Ni, Re, Ti, W, and Zn) did not stimulate growth. Like the V-nitrogenase, the nitrogenase synthesized by the double deletion strain reduced acetylene to both ethylene and ethane (C2H6/C2H4 ratio, 0.046). There was an approximately 10-fold increase in ethane production when Mo was added to the deletion strain grown in medium lacking Mo and V. This change in reactivity may be due to the incorporation of an Mo-containing cofactor into the nitrogenase synthesized by the double-deletion strain. A strain synthesizing the V-nitrogenase did not show a similar increase in ethane production. The growth characteristics of the double-deletion strain, together with the metal composition reported for a nitrogenase isolated from a tungstate-tolerant strain lacking genes for the molydenum enzyme grown in the absence of Mo and V (J. R. Chisnell, R. Premakumar, and P. E. Bishop, J. Bacteriol. 170:27-33, 1988) show that A. vinelandii can synthesize a nitrogenase which lacks both Mo and V. Reduction of dinitrogen by nitrogenase can therefore occur at a center lacking both these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号