首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heterosynaptic interactions between synapses located at a considerable distance from the cell body (perforant path) and lying close to the body of the neuron (synapses of Schaffer's collaterals and axons of the dentate fascia) on guinea pig hippocampal neurons were investigatedin vitro. It was shown by the paired stimulus method that, using stimulation of subthreshold intensity for action potential generation, spatiotemporal summation takes place in both pairs of synaptic systems. If above-threshold stimulation was used, afferents lying close to the cell body suppressed responses evoked by stimulation of distant afferents for a longer time (up to 20 msec in area CA1 and up to 300 msec in area CA3) than during the opposite combination of stimuli (up to 3–8 msec). After tetanization of the dentate fascia depression of responses of area CA3 neurons to stimulation of the perforant path was observed for 2–30 min. In the remaining cases, no significant prolonged heterosynaptic posttetanic changes were observed. The possible mechanisms of these interactions are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 524–532, November–December, 1979.  相似文献   

2.
The efficiency of synapses of the perforant path located on terminals of apical dendrites of CA1 and CA3 neurons was investigated in sections of the guinea pig hippocampus in vitro. Neurons of both areas were shown to respond to stimulation of the perforant path by action potential generation. Responses of most CA1 neurons appeared to repetitive stimulation with a frequency of up to 30–80/sec. Neurons in area CA3 respond only to low-frequency stimulation (under 5/sec). Posttetanic potentiation of responses to stimulation of the perforant path was found in both areas of the hippocampus.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 303–310, July–August, 1979.  相似文献   

3.
Changes in the EEG induced by a single spike were recorded in the hippocampus of an unanesthetized rabbit. Summation of focal electrical activity synchronous with spontaneous single unit discharges at the symmetrical point of contralateral hemisphere revealed no stable potentials which could reflect these changes. In two cases discharges identified as activity of Shaffer's collaterals were recorded in area CA1. Summation of post-spike changes in evoked activity recorded by the same microelectrode showed stable negative waves with an amplitute of 40–60 µV, which could have been evoked by single spikes. The curve of amplitude of the averaged evoked potentials versus near-threshold current strength stimulating the intrahippocampal pathways was not smooth in most experiments but stepwise in character. It is suggested that the minimal evoked potential corresponding to the first step (amplitude 40–80 µV) reflects a response to stimulation of one fiber. After above-threshold tetanization prolonged posttetanic potentiation of the minimal evoked potentials did not arise in CA1 in response to stimulation of Shaffer's collaterals. Minimal evoked potentials recorded in area CA3 in response to stimulation of the dentate fascia showed clear potentiation. The results are in agreement with the hypothesis of the synaptic localization of the mechanisms responsible for prolonged posttetanic potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 124–134, March–April, 1977.  相似文献   

4.
The reaction of field CA1 hippocampal neurons to stimulation of the reticular formation (RF) with impulses of different frequencies was investigated in experiments on unanesthetized rabbits. The effect of electrical and sensory stimuli was compared and the effect of reticular stimulation on the sensory responses was determined. With an increase in the frequency of RF stimulation, the number of neurons of field CA1 responding with inhibition of the activity increases. Multimodal neurons of the hippocampus depend on the reticular input to a greater degree than unimodal neurons. Neurons whose activity does not change in response to the effect of sensory stimuli also do not respond to stimulation of the RF. Neurons responding with inhibitory reactions to sensory stimulation show a higher correlation with the effects of RF stimulation than neurons with activation reactions and, especially those with "complex" responses to the effect of sensory stimuli. In a considerable number of hippocampal neurons the responses to sensory stimuli change in the course of 10–15 min after stimulation of the RF. The role of the RF in the organization of the reactions of hippocampal neurons is discussed.Division of Memory Problems, Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oke. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 227–235, May–June, 1971.  相似文献   

5.
Evoked potentials (EP) and neuronal responses produced by tooth pulp stimulation and a clicking sound were recorded at different hippocampal sites using microelectrodes in unrestrained rats. Spatial distribution of EP was found to be the same for both types of stimulation. Averaged EP consisted of a high amplitude negative preceded by a low-amplitude positive component (N1 and P1, respectively). Latency of the N1 wave reached its minimum (of 27 msec) at the middle third of the molecular layer of the dentate gyrus and the outer portion of the CA3 apical dendrites. Latency of N1 was considerably longer in the stratum radiatum layer of the CA1. Laminar profiles of the amplitude of the N1 componenent of EP produced in the dentate gyrus and the CA3 by tooth pulp stimulation resemble those observed during perforant path stimulation; in the CA1 they are similar to those evoked by stimulating the Schaffer collaterals. Maximum amplitude of the P1 component was observed above the pyramidal layer of the CA1 and the hilus. Neuronal discharge pattern changed in all hippocampal regions under the effects of both tooth pulp stimulation and the clicking sound. It is deduced that information can reach the hippocampus by two routes: via a "fast" (inhibitory) pathway through the fimbria and the fornix and a slower (excitatory) path through the entorhinal cortex.P. Flexig Institute for Brain Research, Karl Marx University, Leipzig, DR. Institute of Physiology, Pecs University Medical School, Pecs, Hungary. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 36–46, January–February, 1987.  相似文献   

6.
The effect of electrical stimulation of the medial nucleus of the septum and of hippocampal area CA1 on subicular neurons with three different types of spontaneous activity (with theta-modulation, with delta-modulation and complex spikes, and with irregular single-spike activity) was studied in unanesthetized rabbits by extracellular recording of unit activity. Cells with theta-activity were found to respond in a distinctive functional manner to stimulation of the medial nucleus of the septum: Their reactivity was higher but latent periods of their responses were much shorter than those of cells with delta-activity and irregular discharges. Stability of modulation of theta-cell activity increased both during and after stimulation of the medial septal nucleus. Electrical stimulation of hippocampal area CA1, on the other hand, led to disappearance of rhythm modulation. Average response latencies of all three types of cells to stimulation of area CA1 were equal. The results indicate special properties of the septal input to subicular cells with theta-modulation.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 326–333, May–June, 1985.  相似文献   

7.
In chronic experiments on rabbits using extracellular recording of unit activity in hippocampal area CA1 the effects of stimulation of the subiculum, posterior cingulate cortex, and anterior and posterior nonprimary areas of the neocortex were investigated. The effects of such stimulation were compared in the intact and chronically isolated hippocampus. It is concluded from the results that direct two-way connections exist between CA1 and the subiculum. Polysynaptic influences of the subiculum on CA1 are realized through the entorhinal cortex, for they are not present in the isolated hippocampus. Influences of the neocortical areas studied on CA1 are transmitted to some extent through a relay in the subiculum. The entorhinal cortex plays no part in the realization of polysynaptic effects. The effectiveness of these influences increases with removal of the principal hippocampal afferent systems.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 315–323, May–June, 1982.  相似文献   

8.
The distribution of monoamine oxidase activity in the rabbit hippocampus was studied by quantitative histochemical analysis. The presence of monoamine oxidase activity was found in str. lacunosum-moleculare of areas CA1 and CA2 of the hippocampus and in str. moleculare of the dentate fascia. A strong positive reaction was found in layers containing many myelinated fibers (the alveus and Shaffer's collaterals). However, when the reaction was carried out without substrate, considerable deposition of diformazan was observed in these layers. These observations and the ability of myelin to reduce nitro-BT spontaneously, described in the literature, suggest that the positive Glenner's reaction in the alveus and Shaffer's collaterals is not specific. The deposition of diformazan in the layer of pyramidal and granular neurons likewise is nonspecific, as is confirmed by the results of experiments with preincubation in iproniazid and with incubation without substrate.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 135–141, March–April, 1977.  相似文献   

9.
The formation of properties of frequency potentiation in the entorhinal afferent pathway of the hippocampus was studied in unanesthetized rabbits aged from 1 to 15 days. In areas CA1 and CA3 of the dorsal hippocampus in newborn rabbits repetitive (1–20 Hz) electrical stimulation of the perforant path led to an increase in amplitude of the slow wave of the field potential by 20–100% compared with the control and to an increase in the probability of response discharges from the neurons from 0–0.5 in the control to 0.8–1.0 during tetanization. In rabbits aged 2–3 days potentiation was more marked at a frequency of 4–6 Hz, whereas depression of the responses developed rapidly to a higher frequency of stimulation. The frequency optimum of 4–15 Hz was established on the 5th day. Potentiation of the first component of the field potential was observed starting from the 8th–10th day of life. The experimental results show that the property of frequency potentiation in the cortical afferent connections of the hippocampus is found in rabbits actually at birth, and it acquires the adult form at the beginning of the second week of life.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 533–539, November–December, 1979.  相似文献   

10.
By extracellular recording of unit activity and electrical stimulation of unanesthetized rabbits the character of the following principal intrinsic hippocampal connections was investigated: fascia dentata with area CA3 (series FD-CA3) and area CA3 with area CA1 (series CA3-CA1). Differences between the functional characteristics of these two systems of connections were shown. The CA3-CA1 system was highly efficient, with a sharply defined boundary between subthreshold and threshold intensities of stimulation and with a wide range of active frequencies; recruiting was negligible and no sign of prolonged potentiation was present. The FD-CA3 system was characterized by low efficiency, a wide threshold zone, and narrow range of active frequencies, slow recruiting, and long preservation of incoming influences. The probability that these functional differences depend on the morphological characteristics of the systems of connections and their possible role in the function of the hippocampus are discussed.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 259–266, May–June, 1976.  相似文献   

11.
The effect of noradrenalin (NA) and serotonin (5-HT) on responses of area CA3 cells evoked by electrical stimulation of mossy fibers was studied in slices of guinea pig hippocampus survivingin vitro. Both substances, which modify the general level and organization of spontaneous activity, also affected responses of area CA3 cells. Changes in magnitude and structure of the response usually correlated with corresponding changes in spontaneous activity. In certain cases NA, which lowered the frequency of spontaneous activity but increased its relative content of "complex discharges" and also the number of reduced action potentials in the complex discharge, also led to an increase in the response to stimulation. 5-HT evoked periodic grouped activity in some cells and led to the appearance of such grouped discharges for the first time in the responses of other cells. Unlike NA, 5-HT caused prolonged (up to 40 min) after-facilitation of the response and an increase in spontaneous discharge frequency.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 410–417, July–August, 1982.  相似文献   

12.
Unit responses in the primary somatosensory projection cortex to stimulation of the ventro-posterolateral thalamic nucleus were investigated by extra- and intracellular recording in chronic experiments on cats. Short-latency spike responses of 71.3% of recorded neurons appeared after not more than 4 msec. It is concluded that activation of neurons in this area of the cortex is chiefly monosynaptic and disynaptic. Besides participating in the initial response to the stimulus, one-quarter of the neurons generated after-discharges 120–314 msec later. These after-discharges are based on rebound after IPSPs and additional synaptic activation. Initial inhibition may appear 1.5 msec after stimulation of the ventro-posterolateral nucleus, evidence against the participation of recurrent collaterals in the formation of these IPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 348–354, July–August, 1973.  相似文献   

13.
The course of functional maturation with age of mossy fiber synapses on pyramidal cells in areas CA3,4 of the dorsal hippocampus was investigated by extracellular recording of focal potentials and single unit responses of the hippocampus to electrical stimulation of the dentate fascia in waking, unimmobilized rabbits aged from 1 to 14 days. After the 4th day of postnatal life focal potentials appeared in response to single stimulation, in the form of a biphasic short-latency wave, characteristic of responses of the mature hippocampus, accompanied by spike discharges with a latent period of 3 to 10 msec and inhibitory responses of the hippocampal neurons. During the next 10 days the amplitude of the focal potentials increased from several hundred millivolts, with the sharpest increase observed from the 4th through the 7th days. In early age periods global and unitary responses were shown to be capable of frequency potentiation and also of short-term after-potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 246–254, May–June, 1980.  相似文献   

14.
Responses evoked in single neurons of the medial geniculate body (MGB) by electrical stimulation of auditory cortex and fibers of the brachium of the inferior colliculus (BIC) were investigated in vivo and in vitro. In vivo experiments were performed on cats anaesthetized by kalipsol. In vitro experiments were carried out on surviving slices of the rat brain using MGB intranuclear simulation. It has been found that the responses to cortical and nuclear local stimulations show similar peculiarity: an increase in stimulation rate is followed by potentiation and summation of slow EPSPs. At the same time, BIC stimulation evokes mainly fast EPSPs (both in vivo and in vitro) which are remarkably suppressed when rate and intensity of BIC stimulation increase. Distinct features of the MGB neuronal responses to activation of ascending pathways and corticofugal fibers are probably due to differences in anatomical structural among the tested inputs and in chemical mechanisms of the synaptic processes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 203–211, May–June, 1993.  相似文献   

15.
Intracellular activity was recorded from the functionally identified motor cortex neurons (MI, area 4) in acute experiments on myorelaxin-immobilized cats under calypsol anesthesia. Changes in neuronal responses to testing stimulation of the ventrolateral thalamic nucleus or pyramidal tract fibers were studied; the same or another input was used for a conditioning stimulation. Excitatory and inhibitory components of test responses of variousMI neurons were found to be either facilitated or depressed. The facilitation of orthodromic excitation was more frequent in the case of thalamic testing stimulation. The depression of both excitatory and inhibitory components of the response was more pronounced with paired stimulation of the pyramidal tract fibers. The peculiarities of interaction between direct afferent and recurrent signals in theMI neurons are thought to be determined by different distribution of thalamocortical fiber terminals and recurrent collaterals of corticofugal axons in the cortex and nonuniform localization of their synapses on dendrites and somata of the studied cells. It seems possible that these peculiarities also are connected with different chemical mechanisms of synaptic transmission in the above synapses and different properties of postsynaptic membrane receptors.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 203–210, May–June, 1994.  相似文献   

16.
Dependence of the inhibitory action of adenosine on the extracellular composite EPSP on the concentrations of Mg and Ca cations in the medium was investigated in isolated slices of rat hippocampusin vitro. Extracellular EPSPs were derived in the region of apical dendrites of pyramidal cells in area CA1 during stimulation of Schaffer's collaterals. The blocking action of bivalent cations (an increase in Mg++ or a decrease in Ca++) developed almost five times more slowly than the action of adenosine. An increase in the external Mg++ concentration potentiated whereas a decrease weakened the inhibitory action of adenosine. Ca++ ions had the opposite effect. Antagonistic relations were exhibited between Mg++ and Ca++ ions. Analysis of dose-response curves for adenosine showed that during a simultaneous increase in the extracellular Ca++ and decrease in Mg++ concentrations, not only was the maximal effect of adenosine reduced, but so also was its binding constant with the receptor. The results suggest that antagonism between Ca cations and adenosine is mixed in character — both competitive and noncompetitive. The possible mechanism of the inhibitory action of adenosine on synaptic transmission and the role of bivalent cations in this process are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 532–539, July–August, 1984.  相似文献   

17.
Synaptic responses of neurons in segments C2 and C3 to stimulation of locomotor points in the medulla or midbrain were recorded extracellularly in mesencephalic cats. Neurons generating responses with an index of 0.4–0.6 to stimulation with a frequency of 2 Hz maintained this same index at frequencies of 20–60 Hz. The discharge index of many neurons during stimulation at 2 Hz was low, and it increased to 0.4–0.6 when high-frequency stimulation was used. More than half of the cells were excited by stimulation of both ipsilateral and contralateral locomotor points; one-quarter of the neurons responded to stimulation of locomotor points in both medulla and midbrain. The cells studied were located 1.8–4.2 mm from the dorsal surface of the spinal cord. The mean latencies of responses with an index of not less than 0.5 lay within the range 2–30 msec, with a mode of 2–8 msec. Considerable fluctuations of latent period were observed for long-latency responses. The possibility that the neurons studied may participate in the transmission of activity from the locomotor region of the brain stem to stepping generators in the spinal cord is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 355–361, July–August, 1983.  相似文献   

18.
Different types of reflex discharges were produced in various preparations by stimulating the dorsal root of isolated frog spinal cord. These ranged from multiphasic low-amplitude waves to distinctly synchronized monosynaptic response. The discharges were followed by facilitation in the former and deep, protracted inhibition of response to test dorsal root stimulation in the latter. When interstimulus intervals measured 40–50 msec, inhibitory action was less pronounced than at shorter (15–30 msec) or longer (60–100 msec) intervals, thus indicating that at least two types of inhibition were at work, one at an earlier and the other at a later stage. Strychnine at a concentration of 10–5 M effectively reinforced the former and blocked the latter, while 10–4 M d-tubocurarine attenuated both types of inhibition substantially. It is concluded that inhibition of response occurs mainly as a result of recurrent activation of inhibitory systems via recurrent motoneuron axon collaterals when frog spinal cord afferents are excited. Intensity of the later (presynaptic) and earlier (postsynaptic) inhibition of reflex transmission is determined by the degree of synchrony in motoneuronal discharge in response to orthodromic stimulation.Institute of Medical Radiology, Academy of Medical Sciences of the USSR, Obninsk, Kaluga Oblast. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 343–350, May–June, 1987.  相似文献   

19.
Responses of 46 neurons of the CA1 field, of the dorsal hippocampus to visual stimuli were investigated during acute experiments on awake cats following pretrigeminal brainstem action. The receptive field was small in size in 71% of hippocampal neurons. The cells responded both tonically (34%) and phasically (66%) to the presentation of immobile stimuli. All the test cells of the CA1 field of the dorsal hippocampus responded to moving visual stimuli and 27% of these neurons were directionally tuned. A group of 7% of the neurons displayed particular sensitivity to the movement of a dark spot across the receptive field; these cells frequently reacted more to a moving dark spot than to a bar. Findings indicate the presence of highly specific sensory neurons within the hippocampus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 779–786, November–December, 1985.  相似文献   

20.
In experiments on spinal cats, when branches of the pelvic nerve innervating the rectum were electrically stimulated at the same time as the peroneal nerve it was found that 12 out of 20 neurons, to which the effects of both these supplies converged, were activated by both A- and C-fibers. Responses to stimulation of the pelvic nerve were apparently mediated via fibers with a conduction velocity not less than 2.2 m·s–1. In studies in spinal rats it was shown that distension of the more distal regions of the large intestine could excite neurons in laminae IV–V, and inhibit neurons in deeper laminae. In seven out of 18 cases the inhibition evoked by visceral stimulation was due to a direct effect on the postsynaptic membrane of these cells, and in 11 cases it was localized to presynaptic structures. Naloxone, strychnine, and atropine did not block this inhibition, thus providing evidence against the possible participation of opioids, glycine, and acetylcholine in its generation. Phaclofen, a GABAB-receptor antagonist, was also without effect, but bicuculline suppressed this inhibition in three out of 12 cases, indicating that GABAA-receptors are involved.I. M. Sechenov Medical Academy, Russian Ministry of Public Health, Moscow. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 3–11, January–February, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号