首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   

2.
This study was conducted to determine reciprocal effects of low to high doses of nitrogenous fertilizer (N30, N40, N50, N60 and N70 — 30, 40, 50, 60 and 70 kg ha−1 respectively) and CO2 enriched environment on C and N partitioning in soybean (Glycine max (L.) Merril cv JS-335). Plants were grown from seedling emergence to maturity inside open top chambers under ambient, AC (350±50 mol mol−1) and elevated, EC (600±50 mol mol−1) CO2 and analyzed at seedling, vegetative, flowering, pod setting and maturity stages. Soybean responded to both CO2 enrichment and N supply. Leaves, stem and root reserves at different growth stages were analyzed for total C and N contents. Consistent increase in the C contents of the leaf, stem and root was observed under EC than in AC. N contents in the different plant parts were found to be decreased under EC-grown plants specially at seedling and vegetative stage despite providing N doses to the soil. Significant increase observed for C to N dry mass ratio under EC in the root, stems and leaves at seedling and vegetative stage was decreased in the middle and later growth stages possibly due to combined impact of N doses to the soil and increased N2 fixing activities due to EC conditions. Critical analysis of our findings reveals that the composition and partitioning of C and N of soybean under variable rates of N supply and CO2 enrichment alter according to need under altered metabolic process. These changes eventually may lead to alteration in uptake of not only N but other essential nutrients also under changing atmosphere.  相似文献   

3.
ABSTRACT

After a 3-year exposure to elevated CO2, young trees of Sitka spruce (Picea sitchensis (Bong.) Carr.) were planted in native, nutrient-deficient forest soil and grown for two more years with three CO2 treatments in open-top chambers, and with two nutrient treatments (with and without supplied N). Elevated CO2 resulted in larger fresh mass, dry mass, leaf area and leaf thickness in two-year old needles, but had no effect on one-year old and current needles. Tree height, basal diameter and biomass production also increased, regardless of N supply. In trees without added N, elevated CO2 resulted in higher root-to-shoot and absorbing roots-to-stump ratios. Regardless of N supply, trees grown in elevated CO2 had lower photosynthetic rates on a leaf area basis. Photosynthesis reduction was accompanied by a decline in Rubisco activity and leaf N concentration. Under elevated CO2, added N elevated photosynthesis and Rubisco activity, suggesting a dependence on N availability of the photosynthetic response to elevated CO2. Stomatal conductance of trees grown with added N decreased in response to elevated CO2. This may account for the larger reduction in intercellular CO2 concentration, and hence photosynthesis, in the trees supplied with N than in those without N supply.  相似文献   

4.
Impacts of either elevated CO2 or drought stress on plant growth have been studied extensively, but interactive effects of these on plant carbon and nitrogen allocation is inadequately understood yet. In this study the response of the dominant desert shrub, Caragana intermedia Kuanget H.c.Fu, to the interaction of elevated CO2 (700 ± 20 μmol mol−1) and soil drought were determined in two large environmental growth chambers (18 m2). Elevated CO2 increased the allocation of biomass and carbon into roots and the ratio of carbon to nitrogen (C:N) as well as the leaf soluble sugar content, but decreased the allocation of biomass and carbon into leaves, leaf nitrogen and leaf soluble protein concentrations. Elevated CO2 significantly decreased the partitioning of nitrogen into leaves, but increased that into roots, especially under soil drought. Elevated CO2 significantly decreased the carbon isotope discrimination (Δ) in leaves, but increased them in roots, and the ratio of Δ values between root and leaf, indicating an increased allocation into below-ground parts. It is concluded that stimulation of plant growth by CO2 enrichment may be negated under soil drought, and under the future environment, elevated CO2 may partially offset the negative effects of enhanced drought by regulating the partitioning of carbon and nitrogen.  相似文献   

5.
Carbon exchange rates (CER) and whole-plant carbon balances of beech (Fagus grandifolia) and sugar maple (Acer saccharum) were compared for seedlings grown under low irradiance to determine the effects of atmospheric CO2 enrichment on shade-tolerant seedlings of co-dominant species. Under contemporary atmospheric CO2, photosynthetic rate per unit mass of beech was lower than for sugar maple, and atmospheric CO2 enrich ment enhanced photosynthesis for beech only. Aboveground respiration per unit mass decreased with CO2 enrichment for both species while root respiration per unitmass decreased for sugar maple only. Under contemporary atmoapheric CO2, beech had lower C uptake per plant than sugar maple, while C losses per plant to nocturnal aboveground and root respiration were similar for both species. Under elevated CO2, C uptake per plant was similar for both species, indicating a significant relative increase in whole-seedling CER with CO2 enrich ment for beech but not for sugar maple. Total C loss per plant to aboveground respiration was decreased for beech only because increase in sugar maple leaf mass counterbalanced a reduction in respiration rates. Carbon loss to root respiration per plant was not changed by CO2 enrichment for either species. However, changes in maintenance respiration cost and nitrogen level suggest changes in tissue composition with elevated CO2. Beech had a greater net daily C gain with CO2 enrichment than did sugar maple in contrast to a lower one under contemporary CO2. Elevated CO2 preferentially enhances the net C balance of beech by increasing photosynthesis and reducing respiration cost. In all cases, the greatest C lost was by roots, indicating the importance of belowground biomass in net C gain. Relative growth rate estimated from biomass accumulation was not affected by CO2 enrichment for either species possibly because of slow growth under low light. This study indicates the importance of direct effects of CO2 enrichment when predicting potential change in species distribution with global climate change.  相似文献   

6.
The aim of this work was to examine the response of wheat plants to a doubling of the atmospheric CO2 concentration on: (1) carbon and nitrogen partitioning in the plant; (2) carbon release by the roots; and (3) the subsequent N uptake by the plants. The experiment was performed in controlled laboratory conditions by exposing fast-growing spring wheat plants, during 28 days, to a 14CO2 concentration of 350 or 700 L L–1 at two levels of soil nitrogen fertilization. Doubling CO2 availability increased total plant production by 34% for both N treatment. In the N-fertilized soil, the CO2 enrichment resulted in an increase in dry mass production of 41% in the shoots and 23% in the roots; without N fertilization this figure was 33% and 37%, respectively. In the N-fertilized soil, the CO2 increase enhanced the total N uptake by 14% and lowered the N concentration in the shoots by 23%. The N concentration in the roots was unchanged. In the N-fertilized soil, doubling CO2 availability increased N uptake by 32% but did not change the N concentrations, in either shoots or roots. The CO2 enrichment increased total root-derived carbon by 12% with N fertilization, and by 24% without N fertilization. Between 85 and 90% of the total root derived-14C came from respiration, leaving only 10 to 15% in the soil as organic 14C. However, when total root-derived 14C was expressed as a function of root dry weight, these differences were only slightly significant. Thus, it appears that the enhanced carbon release from the living roots in response to increased atmospheric CO2, is not due to a modification of the activity of the roots, but is a result of the increased size of the root system. The increase of root dry mass also resulted in a stimulation of the soil N mineralization related to the doubling atmospheric CO2 concentration. The discussion is focused on the interactions between the carbon and nitrogen allocation, especially to the root system, and the implications for the acquisition of nutrients by plants in response to CO2 increase.Abbreviations N soil fertilization without nitrogen - N soil fertilization with nitrogen  相似文献   

7.
The effects of CO2 enrichment and soil nutrient status on tissue quality were investigated and related to the potential effect on growth and decomposition. Two California annuals, Avena fatua and Plantago erecta, were grown at ambient and ambient plus 35 Pa atmospheric CO2 in nutrient unamended and amended serpentine soil. Elevated CO2 led to significantly increased Avena shoot nitrogen concentrations in the nutrient amended treatment. It also led to decreased lignin concentrations in Avena roots in both nutrient treatments, and in Plantago shoots and roots with nutrient addition. Concentrations of total nonstructural carbohydrate (TNC) and carbon did not change with elevated CO2 in either species. As a consequence of increased biomass accumulation, increased CO2 led to larger total pools of TNC, lignin, total carbon, and total nitrogen in Avena with nutrient additions. Doubling CO2 had no significant effect on Plantago. Given the limited changes in the compounds related to decomposibility and plant growth, effects of increased atmospheric CO2 mediated through tissue composition on Avena and Plantago are likely to be minor and depend on site fertility. This study suggests that other factors such as litter moisture, whether or not litter is on the ground, and biomass allocation among roots and shoots, are likely to be more important in this California grassland ecosystem. CO2 could influence those directly as well as indirectly.  相似文献   

8.
The CO 2 fertilization hypothesis stipulates that rising atmospheric CO 2 has a positive effect on tree growth due to increasing availability of carbon. The objective of this paper is to compare the recent literature related to both field CO 2 -enriched experiments with trees and empirical dendrochronological studies detecting CO 2 fertilization effects in tree-rings. This will allow evaluation of tree growth responses to atmospheric CO 2 enrichment by combining evidence from both ecophysiology and tree-ring research. Based on considerable experimental evidence of direct CO 2 fertilization effect (increased photosynthesis, water use efficiency, and above- and belowground biomass), and predications from the interactions of enriched CO 2 with temperature, nitrogen and drought, we propose that warm, moderately drought-stressed ecosystems with an ample nitrogen supply might be the most CO 2 responsive ecosystems. Empirical tree-ring studies took the following three viewpoints on detecting CO 2 fertilization effect in tree-rings: 1) finding evidence of CO 2 fertilization effect in tree-rings, 2) attributing growth enhancement to favorable climate rather than atmospheric CO 2 enrichment, and 3) considering that tree growth enhancement might be caused by synergistic effects of several factors such as favorable climate change, CO 2 fertilization, and anthropogenic atmospheric deposition (e.g., nitrogen). At temperature-limiting sites such as high elevations, nonfindings of CO 2 fertilization evidence could be ascribed to the following possibilities: 1) cold temperatures, a short season of cambial division, and nitrogen deficiency that preclude a direct CO 2 response, 2) old trees past half of their maximum life expectancy and consequently only a small increase in biomass increment due to CO 2 fertilization effect might be diminished, 3) the elimination of age/size-related trends by statistical detrending of tree-ring series that might remove some long-term CO 2 -related trends in tree-rings, and 4) carbon partitioning and growth within a plant that is species-specific. Our review supports the atmospheric CO 2 fertilization effect hypothesis, at least in trees growing in semi-arid or arid conditions because the drought-stressed trees could benefit from increased water use efficiency to enhance growth.  相似文献   

9.
Soil respiration in a cropland is the sum of heterotrophic (mainly microorganisms) and autotrophic (root) respiration. The contribution of both these types to soil respiration needs to be understood to evaluate the effects of environmental change on soil carbon cycling and sequestration. In this paper, the effects of free-air CO2 enrichment (FACE) on hetero- and autotrophic respiration in a wheat field were differentiated and evaluated by a novel split-root growth and gas collection system. Elevated atmospheric pCO2 of approximately 200 μmol mol−1 above the ambient pCO2 significantly increased soil respiration by 15.1 and 14.8% at high nitrogen (HN) and low nitrogen (LN) application rates, respectively. The effect of elevated atmospheric pCO2 on root respiration was not consistent across the wheat growth stages. Elevated pCO2 significantly increased and decreased root respiration at the booting-heading stage (middle stage) and the late-filling stage (late stage), respectively, in HN and LN treatments; however, no significant effect was found at the jointing stage (early stage). Thus, the effect of increased pCO2 on cumulative root respiration for the entire wheat growing season was not significant. Cumulative root respiration accounted for approximately 25–30% of cumulative soil respiration in the entire wheat growing season. Consequently, cumulative microbial respiration (soil respiration minus root respiration) increased by 22.5 and 21.1% due to elevated pCO2 in HN and LN, respectively. High nitrogen application significantly increased root respiration at the late stage under both elevated pCO2 and ambient pCO2; however, no significant effects were found on cumulative soil respiration, root respiration, and microbial respiration. These findings suggest that heterotrophic respiration, which is influenced by increased substrate supplies from the plant to the soil, is the key process to determine C emission from agro-ecosystems with regard to future scenarios of enriched pCO2.  相似文献   

10.
种培芳  刘晟彤  姬江丽  李毅 《生态学报》2018,38(6):2065-2073
以荒漠优势植物红砂2年生苗木为试材,采用盆栽试验和开顶式CO_2控制气室模拟CO_2浓度变化(350μmol/mol和700μmol/mol)研究了红砂生物量分配及碳氮特征对降水变化减少30%、减少15%、自然降水、增加15%和增加30%(-30%、-15%、0、15%、30%)的响应。结果表明:(1)CO_2浓度上升显著性的促进红砂地上茎叶和地下的根生物量,降雨量增加或减少也显著性的促进或抑制了这一作用;CO_2倍增时,红砂的地上生物量在降水增加30%时平均增加了61.28%(P0.05),而根生物量在降水增加或减少30%时均分别增加了84%(30%)和3.21%(-30%),这种响应导致红砂根冠比在降水减少时大于降雨量增加时,CO_2倍增显著地抑制了这一作用。(2)CO_2浓度上升显著性地促进了红砂根、茎、叶中的碳含量,显著性地抑制了红砂根、茎、叶中氮含量,降雨量增加或减少也显著性的促进或抑制了这一作用;这种响应导致红砂根、茎、叶的C/N在降雨减少30%时增加80.22%(根)、103.02%(茎)和199.88%(叶)(P0.05),在降雨增加30%时增加24.99%(根)、30.27%(茎0)和104.45%(叶)(P0.05),CO_2浓度倍增显著性地促进了这一作用。(3)以上结果表明,未来全球CO_2浓度升高时,在降雨量增加地区红砂因充足的碳源和水分而得以恢复;在降雨减少的地区,CO_2的升高对降雨减少造成的干旱胁迫有一定的补偿作用,红砂则以较高的根冠比来维持其在荒漠生态系统中地位。  相似文献   

11.
Rozema  J.  Lenssen  G. M.  van de Staaij  J. W. M.  Tosserams  M.  Visser  A. J.  Broekman  R. A. 《Plant Ecology》1997,128(1-2):183-191
UV-B radiation is just one of the environmental factors, that affect plant growth. It is now widely accepted that realistic assessment of plant responses to enhanced UV-B should be performed at sufficiently high Photosynthetically Active Radiation (PAR), preferably under field conditions. This will often imply, that responses of plants to enhanced UV-B in the field will be assessed under simultaneous water shortage, nutrient deficiency and variation of temperature. Since atmospheric CO2 enrichment, global warming and increasing UV-B radiation represent components of global climatic change, interactions of UV-B with CO2 enrichment and temperature are particularly relevant. Only few relevant UV-B× CO2 interaction studies have been published. Most of these studies refer to greenhouse experiments. We report a significant CO2 × UV-B interaction for the total plant dry weight and root dry weight of the C3-grass Elymus athericus. At elevated CO2 (720 mol mol-1, plant growth was much less reduced by enhanced UV-B than at ambient atmospheric CO2 although there were significant (positive) CO2 effects and (negative) UV-B effects on plant growth. Most other CO2 × UV-B studies do not report significant interactions on total plant biomass. This lack of CO2 × UV-B interactions may result from the fact that primary metabolic targets for CO2 and UVB are different. UV-B and CO2 may differentially affect plant morphogenetic parameters: biomass allocation, branching, flowering, leaf thickness, emergence and senescence. Such more subtle interactions between CO2 and UV-B need careful and long term experimentation to be detected. In the case of no significant CO2× UV-B interactions, combined CO2 and UV-B effects will be additive. Plants differ in their response to CO2 and UV-B, they respond in general positively to elevated CO2 and negatively to enhanced UV-B. Moreover, plant species differ in their responsiveness to CO2 and UV-B. Therefore, even in case of additive CO2 and UV-B effects, plant competitive relationships may change markedly under current climatic change with simultaneous enhanced atmospheric CO2 and solar UV-B radiation.  相似文献   

12.
Human activities have resulted in increased nitrogen deposition and atmospheric CO2 concentrations in the biosphere, potentially causing significant changes in many ecological processes. In addition to these ongoing perturbations of the abiotic environment, human-induced losses of biodiversity are also of major concern and may interact in important ways with biogeochemical perturbations to affect ecosystem structure and function. We have evaluated the effects of these perturbations on plant biomass stoichiometric composition (C:N:P ratios) within the framework of the BioCON experimental setup (biodiversity, CO2, N) conducted at the Cedar Creek Natural History Area, Minnesota. Here we present data for five plant species: Solidago rigida, Achillea millefolium, Amorpha canescens, Lespedeza capitata, and Lupinus perennis. We found significantly higher C:N and C:P ratios under elevated CO2 treatments, but species responded idiosyncratically to the treatment. Nitrogen addition decreased C:N ratios, but this response was greater in the ambient CO2 treatments than under elevated CO2. Higher plant species diversity generally lowered both C:N and C:P ratios. Importantly, increased diversity also led to a more modest increase in the C:N ratio with elevated CO2 levels. In addition, legumes exhibited lower C:N and higher C:P and N:P ratios than non-legumes, highlighting the effect of physiological characteristics defining plant functional types. These data suggest that atmospheric CO2 levels, N availability, and plant species diversity interact to affect both aboveground and belowground processes by altering plant elemental composition.  相似文献   

13.
We examined the response of mycorrhizal fungi to free-air CO2 enrichment (FACE) and nitrogen (N) fertilization in a warm temperate forest to better understand potential influences over plant nutrient uptake and soil carbon (C) storage. In particular, we hypothesized that mycorrhizal fungi and glomalin would become more prevalent under elevated CO2 but decrease under N fertilization. In addition, we predicted that N fertilization would mitigate any positive effects of elevated CO2 on mycorrhizal abundance. Overall, we observed a 14% increase in ectomycorrhizal (ECM) root colonization under CO2 enrichment, which implies that elevated CO2 results in greater C investments in these fungi. Arbuscular mycorrhizal (AM) hyphal length and glomalin stocks did not respond substantially to CO2 enrichment, and effects of CO2 on AM root colonization varied by date. Nitrogen effects on AM fungi were not consistent with our hypothesis, as we found an increase in AM colonization under N fertilization. Lastly, neither glomalin concentrations nor ECM colonization responded significantly to N fertilization or to an N-by-CO2 interaction. A longer duration of N fertilization may be required to detect effects on these parameters.  相似文献   

14.
Increases in the concentration of atmospheric carbon dioxide may have a fertilizing effect on plant growth by increasing photosynthetic rates and therefore may offset potential growth decreases caused by the stress associated with higher temperatures and lower precipitation. However, plant growth is determined both by rates of net photosynthesis and by proportional allocation of fixed carbon to autotrophic tissue and heterotrophic tissue. Although CO2 fertilization may enhance growth by increasing leaf-level assimilation rates, reallocation of biomass from leaves to stems and roots in response to higher concentrations of CO2 and higher temperatures may reduce whole-plant assimilation and offset photosynthetic gains. We measured growth parameters, photosynthesis, respiration, and biomass allocation of Pinus ponderosa seedlings grown for 2 months in 2×2 factorial treatments of 350 or 650 bar CO2 and 10/25° C or 15/30° C night/day temperatures. After 1 month in treatment conditions, total seedling biomass was higher in elevated CO2, and temperature significantly enhanced the positive CO2 effect. However, after 2 months the effect of CO2 on total biomass decreased and relative growth rates did not differ among CO2 and temperature treatments over the 2-month growth period even though photosynthetic rates increased 7% in high CO2 treatments and decreased 10% in high temperature treatments. Additionally, CO2 enhancement decreased root respiration and high temperatures increased shoot respiration. Based on CO2 exchange rates, CO2 fertilization should have increased relative growth rates (RGR) and high temperatures should have decreased RGR. Higher photosynthetic rates caused by CO2 fertilization appear to have been mitigated during the second month of exposure to treatment conditions by a 3% decrease in allocation of biomass to leaves and a 9% increase in root:shoot ratio. It was not clear why diminished photosynthetic rates and increased respiration rates at high temperatures did not result in lower RGR. Significant diametrical and potentially compensatory responses of CO2 exchange and biomass allocation and the lack of differences in RGR of ponderosa pine after 2 months of exposure of high CO2 indicate that the effects of CO2 fertilization and temperature on whole-plant growth are determined by complex shifts in biomass allocation and gas exchange that may, for some species, maintain constant growth rates as climate and atmospheric CO2 concentrations change. These complex responses must be considered together to predict plant growth reactions to global atmospheric change, and the potential of forest ecosystems to sequester larger amounts of carbon in the future.  相似文献   

15.
Wong  Suan-Chin 《Plant Ecology》1993,(1):211-221
Cotton plants (Gossypium hirsutum L. var Deltapine 90) and radish plants (Raphanus sativus L var Round Red) were grown under full sunlight using a factorial combination of atmospheric CO2 concentrations (350 µmol mol-1 and 700 µmol mol-1) and humidities (35% and 90% RH at 32 °C during the day). Cotton plants showed large responses to increased humidity and to doubled CO2. In cotton plants, the enhanced dry matter yield due to doubled CO2 concentration was 1.6-fold greater at low humidity than at high humidity. Apart from the direct effect of elevated CO2 level on photosynthesis, the greater effect of doubled CO2 concentration on dry matter yield at low humidity was probably due to: (1) increased leaf water potential caused by reduction of transpiration resulting from the negative CO2 response of stomata to increased CO2 concentration the consequence being greater leaf area expansion; (2) reduction of CO2 assimilation rate at low humidity and normal CO2 concentration as a result of humidity response of stomata causing reduction of intercellular CO2 concentration. In contrast, apart from the very early stage of development, radish plants do not respond to increased humidity but had a relatively large response to doubled CO2 concentration. Furthermore, due to the determinate growth pattern as well as having a prominent storage root, the extra photoassimilate derived at doubled CO2 level is allocated to the storage root.Abbreviatios DAE day after emergence - LAD leaf areal density (leaf dry weight/leaf area) - LAR leaf area ratio (leaf area/plant dry weight) - NAR net assimilation rate - ci internal CO2 concentration - PPFD photosynthetic photon flux density - RGR relative growth rate - RLAGR relative leaf area growth rate - VPD vapour pressure deficit  相似文献   

16.
This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system.  相似文献   

17.
In this paper we firstly show some general responses of biomass partitioning upon nitrogen deprivation. Secondly, these responses are explained in terms of allocation of carbon and nitrogen, photosynthesis and respiration, using a simulation model. Thirdly, we present a hypothesis for the regulation of biomass partitioning to shoots and roots.Shortly after nitrogen deprivation, the relative growth rate (RGR) of the roots generally increases and thereafter decreases, whereas that of the shoot decreases immediately. The increased RGR of the root and decreased RGR of the shoot shortly after a reduction in the nitrogen supply, cause the root weight ratio (root weight per unit plant weight) to increase rapidly.We showed previously that allocation of carbon and nitrogen to shoots and roots can satisfactorily be described as a function of the internal organic plant nitrogen concentration. Using these functions in a simulation model, we analyzed why the relative growth rate of the roots increases shortly after a reduction in nitrogen supply. The model predicts that upon nitrogen deprivation, the plant nitrogen concentration and the rate of photosynthesis per unit plant weight rapidly decrease, and the allocation of recently assimilated carbon and nitrogen to roots rapidly increases. Simulations show that the increased relative growth rate of the root upon nitrogen deprivation is explained by decreased use of carbon for root respiration, due to decreased carbon costs for nitrogen uptake. The stimulation of the relative growth rate of the root is further amplified by the increased allocation of carbon and nitrogen to roots. Using the simple relation between the plant nitrogen concentration and allocation, the model describes plant responses quite realistically.Based on information in the literature and on our own experiments we hypothesize that allocation of carbon is mediated by sucrose and cytokinins. We propose that nitrogen deprivation leads to a reduced cytokinin production, a decreased rate of cytokinin export from the roots to the shoot, and decreased cytokinin concentrations. A reduced cytokinin concentration in the shoot represses cell division in leaves, whereas a low cytokinin concentration in roots neutralizes the inhibitory effect of cytokinins on cell division. A reduced rate of cell division in the leaves leads to a reduced unloading of sucrose from the phloem into the expanding cells. Consequently, the sucrose concentration in the phloem nearby the expanding cells increases, leading to an increase in turgor pressure in the phloem nearby the leaf's division zone. In the roots, cell division continues and no accumulation of sugars occurs in dividing cells, leading to only marginal changes in osmotic potential and turgor pressure in the phloem nearby the root's cell division zone. These changes in turgor pressure in the phloem of roots and sink leaves affect the turgor pressure gradients between source leaf-sink leaf and source leaf-root in such a way that relatively more carbohydrates are exported to the roots. As a consequence RWR increases after nitrogen deprivation. This hypothesis also explains the strong relationship between allocation and the plant nitrogen status.  相似文献   

18.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

19.
Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO2 enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO2 compared to ambient CO2. In response to elevated CO2, the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO2 may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO2-rich atmosphere.  相似文献   

20.
Sitka spruce [Picea sitchensis (Bong.) Carr.] seedlings were grown for 3 years in an outside control plot or in ambient (355 mol mol-1) or elevated (ambient + 350 mol mol-1) atmospheric CO2 environments, within open top chambers (OTCs) at the Institute of Terrestrial Ecology, Edinburgh. Sequential harvests were carried out at the end of each growing season and throughout the 1991 growing season, five in all. Plants grown in elevated CO2 had, (i) 35 and 10% larger root/shoot ratios at the end of the first and third season, respectively, (ii) significantly higher summer leader extension relative growth rates, which declined more rapidly in early autumn than ambient grown plants, (iii) after three growing seasons a significantly increased mean annual relative growth rate, (iv) consistently lower foliar nutrient concentrations, and (v) after two growing seasons smaller total projected needle areas. Plants grown inside OTCs were taller, heavier and had a smaller root/shoot ratio than those grown outside the chambers. There was no effect of CO2 concentration on Sitka spruce leaf characteristics, although leaf area ratio, specific leaf area and leaf weight ratio all fell throughout the course of the 3 year experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号