共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5′ region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine π lineage cells. We found that the π enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate π-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes. 相似文献
3.
To gain an understanding of the genes and mechanisms that govern morphogenesis and its evolution, we have analyzed mutations that disrupt this process in a simple model structure, the male tail tip of the rhabditid nematode C. elegans. During the evolution of rhabditid male tails, there have been several independent changes from tails with rounded tips ("peloderan", as in C. elegans) to those with pointed tips ("leptoderan"). Mutations which produce leptoderan (Lep) tails in C. elegans thus identify candidate genes and pathways in which evolutionary changes could have produced leptoderan tails from peloderan ancestors. Here we report that two novel, gain-of-function (gf) alleles of lin-41 have lesions predicted to affect the N-terminus of the RBCC-domain LIN-41 protein. Both gf alleles cause the tail tip of adult males to retain the pointed shape of the juvenile tails, producing a Lep phenotype that looks like the tails of leptoderan species. Consistent with its role in the heterochronic pathway, we find that lin-41 governs the timing and extent of male tail tip morphogenesis in a dose-dependent manner. Specifically, the Lep phenotype results from a heterochronic delay in the retraction and fusion of the tail tip cells during L4 morphogenesis, such that retraction is not completed before the adult molt. Conversely, we find that tail tip morphogenesis and cell fusions begin precociously at the L3 stage in the reduced-function lin-41 mutant, ma104, resulting in over-retracted male tails in the adult. Because modulated anti-LIN-41 RNAi knockdowns in the gf mutants restore wild-type phenotype, we suggest that the leptoderan phenotype of the gf alleles is due to a higher activity of otherwise normal LIN-41. Additionally, the gf allele is suppressed by the wild-type allele, suggesting that LIN-41 normally regulates itself, possibly by autoubiquitination. We speculate that small changes affecting LIN-41 could have been significant for male tail evolution. 相似文献
4.
5.
Solomon A Mian Y Ortega-Cava C Liu VW Gurumurthy CB Naramura M Band V Band H 《Developmental biology》2008,316(2):191-199
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway. 相似文献
6.
7.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1. 相似文献
8.
Wagmaister JA Miley GR Morris CA Gleason JE Miller LM Kornfeld K Eisenmann DM 《Developmental biology》2006,297(2):550-565
Expression of the Caenorhabditis elegans Hox gene lin-39 begins in the embryo and continues in multiple larval cells, including the P cell lineages that generate ventral cord neurons (VCNs) and vulval precursor cells (VPCs). lin-39 is regulated by several factors and by Wnt and Ras signaling pathways; however, no cis-acting sites mediating lin-39 regulation have been identified. Here, we describe three elements controlling lin-39 expression: a 338-bp upstream fragment that directs embryonic expression in P5-P8 and their descendants in the larva, a 247-bp intronic region sufficient for VCN expression, and a 1.3-kb upstream cis-regulatory module that drives expression in the VPC P6.p in a Ras-dependent manner. Three trans-acting factors regulate expression via the 1.3-kb element. A single binding site for the ETS factor LIN-1 mediates repression in VPCs other than P6.p; however, loss of LIN-1 decreases expression in P6.p. Therefore, LIN-1 acts both negatively and positively on lin-39 in different VPCs. The Forkhead domain protein LIN-31 also acts positively on lin-39 in P6.p via this module. Finally, LIN-39 itself binds to this element, suggesting that LIN-39 autoregulates its expression in P6.p. Therefore, we have begun to unravel the cis-acting sites regulating lin-39 Hox gene expression and have shown that lin-39 is a direct target of the Ras pathway acting via LIN-1 and LIN-31. 相似文献
9.
10.
Streit A Kohler R Marty T Belfiore M Takacs-Vellai K Vigano MA Schnabel R Affolter M Müller F 《Developmental biology》2002,242(2):96-108
Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos. 相似文献
11.
12.
13.
A novel cadmium-inducible gene, cdr-1, was previously identified and characterized in the nematode Caenorhabditis elegans and found to mediate resistance to cadmium toxicity. Subsequently, six homologs of cdr-1 were identified in C. elegans. Here, we describe two homologs: cdr-4, which is metal inducible, and cdr-6, which is noninducible. Both cdr-4 and cdr-6 mRNAs contain open reading frames of 831 nt and encode predicted 32-kDa integral membrane proteins, which are similar to CDR-1. cdr-4 expression is induced by arsenic, cadmium, mercury, and zinc exposure as well as by hypotonic stress. In contrast, cdr-6 is constitutively expressed at a high level in C. elegans, and expression is not affected by these stressors. Both cdr-4 and cdr-6 are transcribed in postembryonic pharyngeal and intestinal cells in C. elegans. In addition, cdr-4 is transcribed in developing embryos. Like CDR-1, CDR-4 is targeted to intestinal cell lysosomes in vivo. Inhibition of CDR-4 and/or CDR-6 expression does not render C. elegans more susceptible to cadmium toxicity; however, there is a significant decrease in their lifespan in the absence of metal. Although nematodes in which CDR-4 and/or CDR-6 expression is knocked down accumulate fluid in the pseudocoelomic space, exposure to hypertonic conditions did not significantly affect growth or reproduction in these nematodes. These results suggest that CDR expression is required for optimal viability but does not function in osmoregulation. 相似文献
14.
15.
Epithelial differentiation is a very early event during development of most species. The nematode Caenorhabditis elegans, with its well-defined and invariant lineage, offers the possibility to link cell lineage, cell fate specification and gene regulation during epithelial differentiation. Here, we focus on the regulation of the gene lin-26, which is required for proper differentiation of epithelial cells in the ectoderm and mesoderm (somatic gonad). lin-26 expression starts in early embryos and remains on throughout development, in many cell types originating from different sublineages. Using GFP reporters and mutant rescue assays, we performed a molecular dissection of the lin-26 promoter and could identify almost all elements required to establish its complex spatial and temporal expression. Most of these elements act redundantly, or synergistically once combined, to drive expression in cells related by function. We also show that lin-26 promoter elements mediate activation in the epidermis (hypodermis) by the GATA factor ELT-1, or repression in the foregut (pharynx) by the FoxA protein PHA-4. Taken together, our data indicate that lin-26 regulation is achieved to a large extent through tissue-specific cis-regulatory elements. 相似文献
16.
17.
18.
Cyclic nucleotide-gated (CNG) channels encoded by tax-4 and tax-2 genes are required for chemo- and thermo-sensation in Caenorhabditis elegans. Here we report the identification and the characterization of cng-3, a new CNG channel gene, found in C. elegans. CNG-3 contains six putative transmembrane regions and a cyclic nucleotide-binding domain that show high homology with CNG channels of higher animals as well as TAX-4. The expression of cng-3 is detected from early stages in worm development and restricted in five sensory neurons of amphid including AFD neuron. While a cng-3 null mutant displays normal chemotaxis to volatile odorants, the mutant worms exhibit impaired thermal tolerance. These results indicate that CNG-3, a new member of CNG channel subunits, may play a critical role in sensation or response of thermal stress in C. elegans. 相似文献
19.
Gissendanner CR Kelley K Nguyen TQ Hoener MC Sluder AE Maina CV 《Developmental biology》2008,313(2):767-786
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs. 相似文献
20.
Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial β-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans. [BMB Reports 2014; 47(1): 15-20] 相似文献