首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinants of postsynaptic Ca2+ signaling in Purkinje neurons   总被引:1,自引:0,他引:1  
Neuronal integration in Purkinje neurons involves many forms of Ca2+ signaling. Two afferent synaptic inputs, the parallel and the climbing fibers, provide a major drive for these signals. These two excitatory synaptic inputs are both glutamatergic. Postsynaptically they activate alpha-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Unlike most other types of central neurons, Purkinje neurons do not express NMDA (N-methyl-D-aspartate) receptors (NMDARs). AMPARs in Purkinje neurons are characterized by a low permeability for Ca2+ ions. AMPAR-mediated synaptic depolarization may activate voltage-gated Ca2+ channels, mostly of the P/Q-type. The resulting intracellular Ca2+ signals are shaped by the Ca2+ buffers calbindin and parvalbumin. Ca2+ clearance from the cytosol is brought about by Ca2+-ATPases in the plasma membrane and the endoplasmic reticulum, as well as the Na+-Ca2+-exchanger. Binding of glutamate to mGluRs induces postsynaptic Ca2+-transients through two G protein-dependent pathways: involving (1) the release of Ca2+ ions from intracellular Ca2+ stores and (2) the opening of the cation channel TRPC1. Homer proteins appear to play an important role in postsynaptic Ca2+ signaling by providing a direct link between the plasma membrane-resident elements (mGluRs and TRPC1) and their intracellular partners, including the IP3Rs.  相似文献   

2.
Neurotransmission in the brain is critically dependent on excitatory synaptic signaling mediated by AMPA-class ionotropic glutamate receptors (AMPARs). AMPARs are known to be associated with Transmembrane AMPA receptor Regulatory Proteins (TARPs). In vertebrates, at least four TARPs appear to have redundant roles as obligate chaperones for AMPARs, thus greatly complicating analysis of TARP participation in synaptic function. We have overcome this limitation by identifying and mutating the essential set of TARPs in C. elegans (STG-1 and STG-2). In TARP mutants, AMPAR-mediated currents and worm behaviors are selectively disrupted despite apparently normal surface expression and clustering of the receptors. Reconstitution experiments indicate that both STG-1 and STG-2 can functionally substitute for vertebrate TARPs to modify receptor function. Thus, we show that TARPs are obligate auxiliary subunits for AMPARs with a primary, evolutionarily conserved functional role in the modification of current kinetics.  相似文献   

3.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

4.
5.
Presynaptic inhibition of neurotransmitter release is thought to be mediated by a reduction of axon terminal Ca2+ current. We have compared the actions of several known inhibitors of evoked glutamate release with the actions of the Ca2+ channel antagonist Cd2+ on action potential-independent synaptic currents recorded from CA3 neurons in hippocampal slice cultures. Baclofen and adenosine decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) without affecting the distribution of their amplitudes. Cd2+ blocked evoked synaptic transmission, but had no effect on the frequency or amplitude of either mEPSCs or inhibitory postsynaptic currents (IPSCs). Inhibition of presynaptic Ca2+ current therefore appears not to be required for the inhibition of glutamate release by adenosine and baclofen. Baclofen had no effect on the frequency of miniature IPSCs, indicating that gamma-aminobutyric acid B-type receptors exert distinct presynaptic actions at excitatory and inhibitory synapses.  相似文献   

6.
Long-lasting synaptic plasticity involves changes in both synaptic morphology and electrical signaling (here referred to as structural and functional plasticity). Recent studies have revealed a myriad of molecules and signaling processes that are critical for each of these two forms of plasticity, but whether and how they are mechanistically linked to achieve coordinated changes remain controversial.It is well accepted that functional plasticity at the excitatory synapse is dependent upon the activities of glutamate receptors. While the activation of NMDARs (N-methyl-D-aspartic acid receptors) and/or mGluRs (metabotropic glutamate receptors) is required for the induction of many forms of plasticity, AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors), the principal mediators of fast excitatory synaptic transmission, are the ultimate targets of modifications that express functional plasticity. Investigations exploring structural plasticity have been mainly focused on the small membranous protrusions on the dendrites called spines. The morphological regulation of these spines is mediated by the reorganization of the actin cytoskeleton, the predominant structural component of the synapse. In this regard, the Rho family of GTPases, particularly Rac1, RhoA and Cdc42, is found to be the central regulator of spine actin and structural plasticity of the synapse.It is thought that the collaborative interaction between functional and structural factors underlies the sustained or permanent nature of long-lasting synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. However, data specifically pertaining to whether and how these two distinct components are linked at the molecular level remain sparse. In this regard, we have identified a number of synaptic proteins that are involved in both structural and functional changes during mGluR-dependent LTD (mGluR-LTD). Among these are the GluA2 (formerly called GluR2) subunit of AMPARs, Rac1 and Rac1-activated kinases. We have discovered that these proteins interact and reciprocally regulate each other, which led us to hypothesize that the GluA2–Rac1 interaction may serve as a coordinator between functional and morphological plasticity. In this review, we will briefly discuss the available evidence to support such a hypothesis.  相似文献   

7.
Postsynaptic density protein‐95 (PSD‐95) localizes AMPA‐type glutamate receptors (AMPARs) to postsynaptic sites of glutamatergic synapses. Its postsynaptic displacement is necessary for loss of AMPARs during homeostatic scaling down of synapses. Here, we demonstrate that upon Ca2+ influx, Ca2+/calmodulin (Ca2+/CaM) binding to the N‐terminus of PSD‐95 mediates postsynaptic loss of PSD‐95 and AMPARs during homeostatic scaling down. Our NMR structural analysis identified E17 within the PSD‐95 N‐terminus as important for binding to Ca2+/CaM by interacting with R126 on CaM. Mutating E17 to R prevented homeostatic scaling down in primary hippocampal neurons, which is rescued via charge inversion by ectopic expression of CaMR126E, as determined by analysis of miniature excitatory postsynaptic currents. Accordingly, increased binding of Ca2+/CaM to PSD‐95 induced by a chronic increase in Ca2+ influx is a critical molecular event in homeostatic downscaling of glutamatergic synaptic transmission.  相似文献   

8.
Since cannabinoid receptors inhibit excitatory synaptic transmission by reducing glutamate release, we have examined whether this might occur through the direct inhibition of presynaptic Ca2+ channels. In cerebrocortical nerve terminals, activation of cannabinoid receptors with WIN55,212-2 reduces the KCl-evoked release of glutamate. However, this inhibition is attenuated when N- and P/Q-type Ca2+ channels are blocked. Through Ca2+ imaging in single nerve terminals, we found that WIN55,212-2 reduced the influx of Ca2+ both in nerve terminals that contain N-type Ca2+ channels and those that contain P/Q-type Ca2+ channels. Thus, cannabinoid receptors modulate the two major Ca2+ channels coupled to glutamate release in the cerebral cortex.  相似文献   

9.
Regulation of AMPA Receptors by Phosphorylation   总被引:5,自引:0,他引:5  
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.  相似文献   

10.
AMPA-type glutamate receptors (AMPARs) play a critical role in mediating fast excitatory synaptic transmission in the brain. Alterations in receptor expression, distribution, and trafficking have been shown to underlie synaptic plasticity and higher brain functions, including learning and memory, as well as brain dysfunctions such as drug addiction and psychological disorders. Therefore, it is essential to elucidate the molecular mechanisms that regulate AMPAR dynamics. We have shown previously that mammalian AMPARs are subject to posttranslational modification by ubiquitin, with AMPAR ubiquitination enhancing receptor internalization and reducing AMPAR cell surface expression. Here we report a crucial role for epidermal growth factor receptor substrate 15 (Eps15), an endocytic adaptor, in ubiquitination-dependent AMPAR internalization. We find that suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interacts with AMPARs, which requires Nedd4-mediated GluA1 ubiquitination and the ubiquitin-interacting motif of Eps15. Importantly, we find that Eps15 plays an important role in AMPAR internalization. Knockdown of Eps15 suppresses the internalization of GluA1 but not the mutant GluA1 that lacks ubiquitination sites, indicating a role of Eps15 for the internalization of ubiquitinated AMPARs. These results reveal a novel molecular mechanism employed specifically for the trafficking of the ubiquitin-modified AMPARs.  相似文献   

11.
Isaac JT  Ashby MC  McBain CJ 《Neuron》2007,54(6):859-871
The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the receptor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however, in certain restricted neuronal populations and under certain physiological or pathological conditions, AMPARs that lack this subunit are expressed. There is a current surge of interest in such GluR2-lacking Ca2+-permeable AMPARs in how they affect the regulation of synaptic transmission. Here, we bring together recent data highlighting the novel and important roles of GluR2 in synaptic function and plasticity.  相似文献   

12.
Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPA receptor‐related proteins, known as TARPs. Little is known about the role of TARPs during development, or about their function in non‐mammalian organisms. Here we report the presence of TARPs, specifically the prototypical TARP, stargazin, in developing zebrafish. We find that zebrafish express two forms of stargazin, Cacng2a and Cacng2b from as early as 12‐h post fertilization (hpf). Knockdown of Cacng2a and Cacng2b via splice‐blocking morpholinos resulted in embryos that exhibited deficits in C‐start escape responses, showing reduced C‐bend angles, smaller tail velocities and aberrant C‐bend turning directions. Injection of the morphants with Cacng2a or 2b mRNA rescued the morphological phenotype and the synaptic deficits. To investigate the effect of reduced Cacng2a and 2b levels on synaptic physiology, we performed whole cell patch clamp recordings of AMPA mEPSCs from zebrafish Mauthner cells. Knockdown of Cacng2a results in reduced AMPA currents and lower mEPSC frequencies, whereas knockdown of Cacng2b displayed no significant change in mEPSC amplitude or frequency. Non‐stationary fluctuation analysis confirmed a reduction in the number of active synaptic receptors in the Cacng2a but not in the Cacng2b morphants. Together, these results suggest that Cacng2a is required for normal trafficking and function of synaptic AMPARs, while Cacng2b is largely non‐functional with respect to the development of AMPA synaptic transmission. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 487–506, 2016  相似文献   

13.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

14.
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.  相似文献   

15.
Giessel AJ  Sabatini BL 《Neuron》2010,68(5):936-947
Acetylcholine release and activation of muscarinic cholinergic receptors (mAChRs) enhance synaptic plasticity in?vitro and cognition and memory in?vivo. Within the hippocampus, mAChRs promote NMDA-type glutamate receptor-dependent forms of long-term potentiation. Here, we use calcium (Ca) imaging combined with two-photon laser glutamate uncaging at apical spines of CA1 pyramidal neurons to examine postsynaptic mechanisms of muscarinic modulation of glutamatergic transmission. Uncaging-evoked excitatory postsynaptic potentials and Ca transients are increased by muscarinic stimulation; however, this is not due to direct modulation of glutamate receptors. Instead, mAChRs modulate a negative feedback loop in spines that normally suppresses synaptic signals. mAChR activation reduces the Ca sensitivity of small conductance Ca-activated potassium (SK) channels that are found in the spine, resulting in increased synaptic potentials and Ca transients. These effects are mediated by M1-type muscarinic receptors and occur in a casein kinase-2-dependent manner. Thus, muscarinic modulation regulates synaptic transmission by tuning the activity of nonglutamatergic postsynaptic ion channels.  相似文献   

16.
At synapses, cell adhesion molecules (CAMs) provide the molecular framework for coordinating signaling events across the synaptic cleft. Among synaptic CAMs, the integrins, receptors for extracellular matrix proteins and counterreceptors on adjacent cells, are implicated in synapse maturation and plasticity and memory formation. However, little is known about the molecular mechanisms of integrin action at central synapses. Here, we report that postsynaptic beta3 integrins control synaptic strength by regulating AMPA receptors (AMPARs) in a subunit-specific manner. Pharmacological perturbation targeting beta3 integrins promotes endocytosis of GluR2-containing AMPARs via Rap1 signaling, and expression of beta3 integrins produces robust changes in the abundance and composition of synaptic AMPARs without affecting dendritic spine structure. Importantly, homeostatic synaptic scaling induced by activity deprivation elevates surface expression of beta3 integrins, and in turn, beta3 integrins are required for synaptic scaling. Our findings demonstrate a key role for integrins in the feedback regulation of excitatory synaptic strength.  相似文献   

17.
Ashby MC  Isaac JT 《Neuron》2011,70(3):510-521
Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experience specifically drives a 3-fold increase in connectivity at postnatal day (P) 9, producing a highly recurrent network. A profound dendritic spinogenesis occurs concurrent with the connectivity increase, but this is not experience dependent. However, in experience-deprived cortex, a much greater proportion of spines lack postsynaptic AMPA receptors (AMPARs) and synaptic connectivity via NMDA receptors (NMDARs) is the same as in normally developing cortex. Thus we describe a approach for quantitative circuit mapping and show that sensory experience sculpts an intrinsically developing template network, which is based on NMDAR-only synapses, by driving AMPARs into newly formed silent spines.  相似文献   

18.
Ehlers MD 《Neuron》2000,28(2):511-525
Both acute and chronic changes in AMPA receptor (AMPAR) localization are critical for synaptic formation, maturation, and plasticity. Here I report that AMPARs are differentially sorted between recycling and degradative pathways following endocytosis. AMPAR sorting occurs in early endosomes and is regulated by synaptic activity and activation of AMPA and NMDA receptors. AMPAR intemalization triggered by NMDAR activation is Ca2+-dependent, requires protein phosphatases, and is followed by rapid membrane reinsertion. Furthermore, NMDAR-mediated AMPAR trafficking is regulated by PKA and accompanied by dephosphorylation and rephosphorylation of GluR1 subunits at a PKA site. In contrast, activation of AMPARs without NMDAR activation targets AMPARs to late endosomes and lysosomes, independent of Ca2+, protein phosphatases, or PKA. These results demonstrate that activity regulates AMPAR endocytic sorting, providing a potential mechanistic link between rapid and chronic changes in synaptic strength.  相似文献   

19.
The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling. Here we show that an about 85-kDa protein kinase phosphorylates GRIP1 on serine 917. This kinase is present in NEEP21 immunocomplexes and is activated in okadaic acid-treated neurons. Pulldown assays and atomic force microscopy indicate that phosphorylated GRIP shows reduced binding to NEEP21. AMPA or N-methyl-D-aspartate stimulation of hippocampal neurons induces delayed phosphorylation of the same serine 917. A wild type carboxy-terminal GRIP1 fragment expressed in hippocampal neurons interferes with GluR2 surface expression. On the contrary, a S917D mutant fragment does not interfere with GluR2 surface expression. Likewise, coexpression of GluR2 together with full-length wild type GRIP1 enhances GluR2 surface expression in fibroblasts, whereas full-length GRIP1-S917D had no effect. This indicates that this serine residue is implicated in AMPAR cycling. Our results identify an important regulatory mechanism in the trafficking of AMPAR subunits between internal compartments and the plasma membrane.  相似文献   

20.
-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs), a subtype of glutamate receptor, contribute to olfactory processing in the olfactory bulb (OB). These ion channels consist of various combinations of the subunits GluR1–GluR4, which bestow certain properties. For example, AMPARs that lack GluR2 are highly permeable to Ca2+ and generate inwardly rectifying currents. Because increased intracellular Ca2+ could trigger a host of Ca2+-dependent odor-encoding processes, we used whole cell recording as well as histological and immunocytochemical (ICC) techniques to investigate whether AMPARs on rat OB neurons flux Ca2+. Application of 1-naphthylacetyl spermine (NAS), a selective antagonist of Ca2+-permeable AMPARs (CP-AMPARs), inhibited AMPAR-mediated currents in subsets of interneurons and principal cells in cultures and slices. The addition of spermine to the electrode yielded inwardly rectifying current-voltage plots in some cells. In OB slices, olfactory nerve stimulation elicited excitatory responses in juxtaglomerular and mitral cells. Bath application of NAS with D,L-2-amino-5-phosphonovaleric acid (AP5) to isolate AMPARs suppressed the amplitudes of these synaptic responses compared with responses obtained using AP5 alone. Co2+ staining, which involves the kainate-stimulated influx of Co2+ through CP-AMPARs, produced diverse patterns of labeling in cultures and slices as did ICC techniques used with a GluR2-selective antibody. These results suggest that subsets of OB neurons express CP-AMPARs, including functional CP-AMPARs at synapses. Ca2+ entry into cells via these receptors could influence odor encoding by modulating K+ channels, N-methyl-D-aspartate receptors, and Ca2+-binding proteins, or it could facilitate synaptic vesicle fusion. GluR2; polyamines; cobalt; glutamate receptor; olfaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号