首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) has long been recognized as both an essential mammalian nutrient and a hazardous element. Sodium selenite is commonly used as a dietary supplement for the treatment of Se deficiency. On the other hand, chronic Se toxicity has been demonstrated to affect the major organs, including the heart, in experimental animals. This study examines the effects of high concentrations of extracellular selenite (in the range of 0.001–1 mM) application into the recording bath on the electrical properties of rat papillary muscles. Conventional glass semifloating microelectrodes were used to record intracellular action potentials (APs) in isolated rat papillary muscles. The amplitude of APs and the resting membrane potential of papillary muscles were not changed following a 20-min selenite (1 mM) application compared to the first minute of its application. Freshly isolated ventricular myocytes by an enzymatic method were used to determine the selenite-induced alterations in Na+ currents. Na+ currents, measured at 22°C, by the whole-cell patch-clamp technique, decreased by 38±8% in the presence of 1 mM selenite for 5 min. These selenite-induced effects were not reversed, but are restored by dithiothreitol (1 mM). These results demonstrated that toxic concentrations of selenite induced a significant shortening in AP duration as a result of an increase in the rate of repolarization. Our findings also suggest that a decrease in Na+ currents, in addition to Ca2+ currents, may play a role in the shortening of AP duration in rat papillary muscles.  相似文献   

2.
1. The longitudinal muscle of the body wall (LMBW) of the holothurian, Isostichopus badionotus contracted when treated with acetylcholine (ACh). The threshold concentration for initiating a contraction was 10−8M ACh.2. Inward calcium (Ca2+) current blockers, diltiazem and verapamil, blocked contractions induced by ACh suggesting that Ca2+ channels are involved. Verapamil caused small rhythmic contractions to occur in some muscle preparations.3. Caffeine initiated contractions only at the high concentration of 10 mM and caused rhythmic contractions in otherwise non-spontaneously beating muscle. The caffeine-contractions were partially blocked by verapamil.  相似文献   

3.
Serotonin [5-hydroxytryptamine (5-HT)] enhances acetyl choline (ACh)-elicited contractures of Aplysia buccal muscles E1 and I5. The possible role of external calcium in regulating the magnitude of ACh contracture in the presence and absence of 5-HT was investigated. Superfusion of E1 with zero calcium medium caused ACh contractures to fail within one to two minutes. Recovery of ACh contracture upon restoring normal medium occurred within two to four minutes. In the absence of 5-HT, ACh contracture decreased proportionally to external [Ca++] in the concentration range of 0–10 mM; however, the amount of enhancement of of ACh contracture following 5-HT treatment did not decrease with external [Ca++] as long as [Ca++] was above a threshold concentration that varied from preparation to preparation. For most preparations, the enhancement of ACh contracture by 5-HT was dependent on the presence of external calcium during 5-HT treatment. Calcium influx into muscles E1 and I5 increased approximately two and a half fold in the presence of 10?6 M 5-HT. A model in which 5-HT brings about calcium “loading” of an ACh releasable intracellular storage site is discussed.  相似文献   

4.
Abstract: Morphine-induced release of adenosine from the spinal cord is believed to contribute to spinal antinociception. Although this release is Ca2+ dependent, little is known of the nature of this dependence. In this study, the effects of the dihydropyridine L-type Ca2+ channel agonist Bay K 8644 and the antagonist nifedipine, the N-type Ca2+ channel antagonist ω-conotoxin, and ruthenium red, a blocker of Ca2+ influx induced by capsaicin, on release of adenosine evoked by morphine were determined. The effect of partial depolarization with a minimally effective concentration of K+ on morphine-evoked release of adenosine also was examined. Morphine 10?5-10?4M produced a dose-dependent enhancement of adenosine release from dorsal spinal cord synaptosomes. Following the addition of 6 mM K+ (total K+ concentration of 10.7 mM), 10?6M morphine also enhanced release, and an additional component of action at 10?8M was revealed. Release was Ca2+-dependent as it was not observed in the absence of Ca2+ and presence of EGTA. Bay K 8644 (10 nM) and nifedipine (100 nM) had no effect on the release of adenosine evoked by morphine, but ω-conotoxin (100 nM) markedly reduced such release in both the absence and the presence of the additional 6 mM K+. Morphine-evoked adenosine release was not altered in the presence of a partially effective dose of capsaicin, nor by ruthenium red. These results indicate that morphine can stimulate two distinct phases of adenosine release from the spinal cord (nanomolar and micromolar), and that both phases of release are due to Ca2+ entry via ω-conotoxin-sensitive N-type Ca2+ channels.  相似文献   

5.
A role for the small G protein rho and rho-kinase has been shown in smooth muscle contraction regarding Ca++ sensitivity. However, there are no data in the literature assessing how this system operates in human umbilical arteries (HUA). Therefore, we evaluated the effects of HA-1077 and Y-27632, two rho-kinase inhibitors, on agonist-(5-hydroxytryptamine [5-HT]) and depolarization-induced (KCl) contractions of HUA. HA-1077 and Y-27632 inhibited 5-HT-induced contractile responses at 10−4 M concentration but not at 10−5 M. HA-1077 at 10−4 M also significantly attenuated contractions induced by 20 mM KCl. In addition, HUA precontracted with 5-HT relaxed concentration dependently in response to HA-1077 and Y-27632. When precontracted with KCl, HUA also relaxed dose-dependently in response to HA-1077, but the maximal relaxation was significantly smaller than the response obtained when precontracted with 5-HT. To determine possible involvement of rho-kinase on agonist-induced intracellular calcium-mediated contractions, tissues were precontracted with 5-HT in Ca++-free Krebs solution before cumulative addition of HA-1077 or Y-27632 (10−7 to 10−4 M). Both rho-kinase inhibitors relaxed HUA completely. Maximum relaxations of HUA to HA-1077 and Y-27632 were significantly larger than the responses seen in normal Krebs solution and were obtained with lower concentrations of the drugs considered to be more specific for rho-kinase inhibition. However, preincubation of HUA with HA-1077 or Y-27632 (10−5 M for both) did not affect the 5-HT-induced contractions in this medium. Finally, immunoblot experiments revealed the expression of rho-kinase isoform rockII protein in HUA. These results indicate that rhoA/rho-kinase pathway can contribute to agonist-induced contractions of HUA. However, this effect appears to be limited to intracellular calcium-induced contractions and may be more important in sustaining contractions rather than the initial phase of force development.  相似文献   

6.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

7.
Summary In this study, the toxic effect of sanguinarine (SANG) on heart was studied with isolated cardiac muscle strip isolated from Wistar rat. SANG induced positive inotropic action followed by contracture on the left ventricle and both atria strips. In addition, SANG dose-dependently inhibited spontaneous beat of the right atrium. SANG-induced contracture was completely suppressed by pretreatment with La3+ or in a Ca2+ free Tyrode solution containing 2.5 mM EGTA. Incubating isolated cardiomyocytes with SANG enhanced the 45Ca2+ influx, which could be inhibited by pretreatment with La3+. However, the SANG-induced 45Ca2+ influx could not be inhibited by pretreatment with other Ca2+ channel blockers, such as nifedipine, verapamil, diltiazem, nickel and manganese, and amiloride. Although antioxidants can inhibit the SANG-induced lipid peroxidation, they could not prevent the SANG-induced contracture. N-acetylcysteine and dithiothreitol, the sulfhydryl reducing agents, were shown to be effective in preventing the SANG-induced contracture. These data suggested that the SANG-induced contracture is caused by the influx of extracellular Ca2+ through a La3+-sensitive Ca2+ channel.  相似文献   

8.
Increased intracellular calcium concentration ([Ca2+]i) is required for smooth muscle contraction. In tracheal and other tonic smooth muscles, contraction and elevated [Ca2+]i are maintained as long as an agonist is present. To evaluate the physiological role of steady-state increases in Ca2+ on tension maintenance, [Ca2+]i was elevated using ionomycin, a Ca2+ ionophore or charybdotoxin, a large-conductance calcium-activated potassium channel (KCa) blocker prior to or during exposure of tracheal smooth muscle strips to Ach (10–9 to 10–4 M). Ionomycin (5 µM) in resting muscles induced increases in [Ca2+]i to 500±230 nM and small increases in force of 2.6±2.3 N/cm2. This tension is only 10% of the maximal tension induced by ACh. Charybdotoxin had no effect on [Ca2+]i or tension in resting muscle. After pretreatment of muscle with ionomycin, the concentration-response relationship for ACh-induced changes in tension shifted to the left (EC50=0.07±0.05 µM ionomycin; 0.17±0.07 µM, control, p<0.05). When applied to the muscles during steady-state responses to submaximal concentrations of ACh, both ionomycin and charybdotoxin induced further increases in tension. The same magnitude increase in tension occurs after ionomycin and charybdotoxin treatment, even though the increase in [Ca2+]i induced by charybdotoxin is much smaller than that induced by ionomycin. We conclude that the resting muscle is much less sensitive to elevation of [Ca2+]i when compared to muscles stimulated with ACh. Steady-state [Ca2+]i limits tension development induced by submaximal concentrations of ACh. The activity of KCa moderates the response of the muscle to ACh at concentrations less than 1 µM.  相似文献   

9.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

10.
The action of acetylcholine and adenosine triphosphate (ATP) on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in the otocyst epithelium of embryonic day 3 chicks with Ca2+-sensitive fluorescence measurements. Increases in [Ca2+]i were evoked by the bath application of acetylcholine (1 μM or higher). The rise in [Ca2+]i was due to the release of Ca2+ from intracellular Ca2+ stores, since the Ca2+ response occurred even in a Ca2+-free medium. The Ca2+ response to acetylcholine was mediated by muscarinic receptors. Atropine of 1 μM abolisehd the response to 10 μM acetylcholine; muscarine and carbamylcholine (100 μM each) evoked Ca2+ rises. Increases in [Ca2+]i were also evoked by the bath application of ATP (10 μM or higher). The Ca2+ rise by ATP was evoked even in a Ca2+-free medium. Adenosine (500 μM) did not cause any Ca2+ response. Suramin and reactive blue 2 (200 μM each) completely blocked the Ca2+ response to 500μM ATP. Uridine triphosphate (500 μM) caused comparable Ca2+ responses with those to 500 μM ATP. These results suggested the involvement of P2U purinoceptors. The potentiation of Ca2+ rise was observed when acetylcholine and ATP were co-applied at submaximal concentrations (10 μM and 100 μM, respectively). We conclude that undifferentiated cells in the otocyst epithelium have CaCa2+ mobilizing systems activated by acetylcholine and ATP. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

12.
The concentrations of Ca2+, Na+ and H+ in echinoderm oocytes and eggs were measured during maturation and activation using ion-selective microelectrodes. In both oocytes and eggs, from three species of starfish and two species of sea urchin, the resting level of cytosolic Ca2+ was about 10-7 M. We did not detect any change in Ca2+ concentration either during hormone-induced oocyte maturation (starfish) or during egg activation (starfish and sea urchin) induced by spermatozoa or chemical agents. During 1-methyl-adenine induced maturation of starfish oocytes the intracellular level of Na+ increased from 12–35 mM to 40–90 mM, while the pH changed from 6.6–6.8 to 7.0–7.2 Aged oocytes, with intact germinal vesicles, also had elevated levels of Na+ and pH.  相似文献   

13.
The action of acetylcholine on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in early embryonic chick retinae. Whole neural retinae were isolated from embryonic day 3 (E3) chicks and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). Increases in [Ca2+]i were evoked by the puff application of acetylcholine at concentration than 0.1 μM. The Ca2+ response became larger in dose–dependant manner up to 10 μM of acetylcholine applied. The rise in [Ca2+]i was not due to the influx of Ca+2 through calcium channels, but to the release of Ca2+ from internal stores. A calcium channel antagonist, nifedipine, which completely blocks the Ca2+ rise caused by depolarization with 100 mM K+, had no effects on the acetylcholine response and the Ca2+ response to acetylcholine occurred even in a Ca2+-free medium. The Ca2+ response to acetylcholine was mediated by muscarinic receptors. Atropine of 1 μM abolished the response to 10 μM acetylcholine, whereas d-tubocurarine of 100 μM had no effects. Two muscarinic agonists, muscarine and carbamylcholine (100 μM each), evoked comparable responses with that to 10 μM acetylcholine. The developmental change of the muscarinic response was examined from E3 to E13. The Ca2+ response to 100 μM carbamylcholine was intense at E3-E5, then rapidly declined until E8. The muscarinic Ca2+ mobilization we found in the early embryonic chick retina may be regarded as a part of the “embryonic muscarinic system” proposed by Drew's group, which appears transiently and ubiquitously at early embryonic stages in relation to organogenesis. 1994 John Wiley & Sons, Inc.  相似文献   

14.
Abstract : Effects of selective Ca2+ channel blockers on GABAergic inhibitory postsynaptic currents (IPSCs) were studied in the acutely dissociated rat nucleus basalis of Meynert (nBM) neurons attached with nerve endings, namely, the “synaptic bouton” preparation, and in the thin slices of nBM, using nystatin perforated and conventional whole-cell patch recording modes, respectively. In the synaptic bouton preparation, nicardipine (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) reduced the frequency of spontaneous postsynaptic currents by 37 and 22%, respectively, whereas ω-conotoxin-GVIA had no effect. After blockade of L- and P/Q-type Ca2+ channels, successive removal of Ca2+ from external solution had no significant effect on the residual spontaneous activities, indicating that N-, R-, and T-type Ca2+ channels are not involved in the spontaneous GABA release. Thapsigargin, but not ryanodine, increased the frequency of spontaneous IPSCs in both the synaptic bouton and slice preparations, suggesting the partial contribution of the intracellular Ca2+ storage site to the spontaneous GABA release. In contrast, ω-conotoxin-GVIA (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) suppressed the evoked IPSCs by 31 and 37%, respectively, but nicardipine produced no significant effect. The residual evoked currents were abolished in Ca2+-free external solution but not in the external solution containing 10-5M Ni2+, suggesting the involvement of N-, P/Q-, and R-type Ca2+ channels but not L- and T-type ones in the evoked IPSCs. Neither thapsigargin nor ryanodine had any significant effects on the evoked IPSCs. It was concluded that Ca2+ channel subtypes responsible for spontaneous transmitter release are different from those mediating the transmitter release evoked by nerve stimulation.  相似文献   

15.
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.  相似文献   

16.
The purpose of this study was to learn wether a number of Ca2+ antagonists were effective in reducing contractile response of the isolated ileum of the sensitized and normal guinea pig. Contractions of the normal ileum in response to LTD4, acetylcholine, histamine, and potassium chloride were obtained before and after verapamil, diltiazen and papaverine. Ovalbumin-induced contractions of the ovalbumin-sensitized ileum were obtained in the presence of the three Ca2+ antagonists. In the normal ileum, all the Ca2+ antagonists were highly effective in diminishing the contractile responses to LTD4, acetylcholine, histamine and potassium chloride. In the sensitized ileum, ovalbumin-evoked contractions, with subsequent release of a potent contractile mediator (presumably SRS-A), were Ca2+-dependent since verapamil, diltiazem and papaverine caused a concentration-related reduction of contractions. Thus, the influx of extracellular Ca2+ plays a key role in the contractile responses of the normal and sensitized guinea pig ileum when stimulated by various potent agonists acting on specific receptors or on the cell membrane.  相似文献   

17.
Mitochondrial Ca2+ activates many processes, from mitochondrial metabolism to opening of the permeability transition pore (PTP) and apoptosis. However, there is considerable controversy regarding the free mitochondrial [Ca2+] ([Ca2+]M) levels that can be attained during cell activation or even in mitochondrial preparations. Studies using fluorescent dyes (rhod-2 or similar), have reported that phosphate precipitation precludes [Ca2+]M from increasing above 2–3 μM. Instead, using low-Ca2+-affinity aequorin probes, we have measured [Ca2+]M values more than two orders of magnitude higher. We confirm here these values by making a direct in situ calibration of mitochondrial aequorin, and we show that a prolonged increase in [Ca2+]M to levels of 0.5–1 mM was actually observed at any phosphate concentration (0–10 mM) during continuous perfusion of 3.5–100 μM Ca2+-buffers. In spite of this high and maintained (>10 min) [Ca2+]M, mitochondria retained functionality and the [Ca2+]M drop induced by a protonophore was fully reversible. In addition, this high [Ca2+]M did not induce PTP opening unless additional activators (phenyl arsine oxide, PAO) were present. PAO induced a rapid, concentration-dependent and irreversible drop in [Ca2+]M. In conclusion [Ca2+]M levels of 0.5–1 mM can be reached and maintained for prolonged periods (>10 min) in phosphate-containing medium, and massive opening of PTP requires additional pore activators.  相似文献   

18.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

19.
Calcium Homeostasis in Digitonin-Permeabilized Bovine Chromaffin Cells   总被引:6,自引:6,他引:0  
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

20.
The role of natural and synthetic auxins in regulation of ion transport and ATPase activity was studied in rice roots (Oryza sativa L. cv. Dunghan Shah). In vivo treatment of seedlings with 2,4-dichlorophenoxyacetic acid at 2 × 10?6M for a short period enhanced subsequent Ca2+ stimulated K+ influx and ATPase activity, while a longer treatment diminished both K+ influx and ATPase activity. Indoleacetic acid at 10?10–10?8M induced ATPase activity. In in vitro experiments both 2,4-dichloro phenoxyacetic acid and indoleacetic acid (10?10–10?8M) stimulated Ca2+, K+-ATPase activity of a plasmalemma rich micro somal fraction from the roots. Acetone extracted ATPase preparations lost their activity. The enzyme regained its activity and its sensitivity towards ions (Ca2++ K+) when reconstituted with phosphatidyl choline. Addition of auxins also indicated that the presence of the lipid was necessary in the interaction between the ATPase and auxins. Auxins and ions probably interact with the intact ATPase lipoprotein complex, which may possess a receptor site for the auxins, possibly as a sub unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号