首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ethylene formation from 1-aminocycloprane-1-carboxylic acid (ACC) was studied in whole protoplasts, evaluolated protoplasts and isolated vacuoles from mesophyll cells of Petunia hybrida L. cv. Pink Magic. The re-formation of the large, central vacuole in evacuolated protoplasts and morphological characteristics of both types of protoplasts were examined by electron microscopy. Both the normal, whole protoplasts and vacuoles isolated from them produced ethylene from ACC at similar rates. Freshly-prepared evacuolated protoplasts had lost the capacity to produce ethylene. Re-formation of the central vacuole in these evacuolated protoplasts occurred between 14 to 17 h of incubation in the recovery medium and was followed by the development of ethyleneforming activity. Both these processes were inhibited by cycloheximide, indicating a requirement for new protein synthesis. Light stimulated the conversion of ACC to ethylene in both the regenerating, whole protoplasts and the evacuolated protoplasts that had re-formed the central vacuole.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CHI cycloheximide  相似文献   

2.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

3.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

4.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   

5.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

6.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

7.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

8.
Varying concentrations of cyclopropane-1,1-dicarboxylic acid (CDA), an inhibitor of 1-aminocyclopropane-1-carboxylic acid oxidase, added to the solid culture medium of tomato nodal shoot segments resulted in a reduction in the level of endogenous ethylene according to the concentration of inhibitor applied. Following treatment with inhibitor, plants were homogenised and the concentrations of CDA and of 1-aminocyclopropane-1-carboxylic acid (ACC) were measured simultaneously in the resulting juice using an HPLC-ESI/MS-MS method. The levels of CDA and ACC measured in the plant tissues were associated with the concentration of inhibitor added to the solid medium. The HPLC-ESI/MS-MS method described produced limits of detection of 0.8 pmol for ACC and of 4 pmol for CDA.  相似文献   

9.
Intracellular compartmentation of 1-aminocyclopropane-1-carboxylic acid (ACC) and N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) in wheat ( Triticum aestivum L. cv. Kanzler) and barley ( Hordeum vulgare L. cv. Gerbel) leaves was studied using different methods: first, the isolation of intact vacuoles from protoplasts and, second, a non-aqueous fractionation procedure. The two methods gave similar results. ACC concentrations were similar in the extravacuolar space and in the vacuole, whereas MACC was accumulated in the vacuolar space. Transport studies revealed that no specific carrier for ACC exists at the tonoplast. MACC transfer across the tonoplast was enhanced by 120% in the presence of ATP. MACC competitively inhibited malate transport into the vacuole indicating that the same transfer system catalyzes the transfer of the two dicarboxylates.
It is concluded that malonylation of ACC is not a prerequisite for the transport of ACC through the tonoplast.  相似文献   

10.
A partially purified preparation of 1-aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) from tomato (Lycopersicon esculentum (Mill.) fruit tissue was used to generate monoclonal antibodies (MAb) specific for the two different MAbs yielded a 50-kDa polypeptide as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. An enzyme-linked immunosorbent assay (ELISA) capable of detecting <1 ng of antigen was developed. The ELISA system was used to demonstrate that two of the MAbs recognized different epitopes on the ACC-synthase protein. Wound-induced increases in ACC-synthase activity in tomato fruit tissue were correlated with changes in ELISA-detectable protein. In-vivo labeling of wounded tissue with [35S]methionine followed by extraction and immunopurification in the presence of various protease inhibitors yielded one major radioactive band of 50 kDa molecular mass. Pulse labeling with [35S]methionine at various times after wounding indicated that the wound-induced increase in ACC-synthase activity involved de-novo synthesis of a rapidly turning over 50-kDa polypeptide.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ELISA enzyme-linked immunosorbent assay - MAb monoclonal antibody - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

11.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

12.
1-aminocyclopropane-1-carboxylate oxidase of apple fruit is periplasmic   总被引:5,自引:1,他引:4  
Immunocytological studies have previously shown that 1-aminocyclopropane-1-carboxylate oxidase (ACO), the enzyme which catalyses the last step of ethylene biosynthesis, is located in the cell wall of apple and tomato fruit cells. In the present study, a combination of cell fractionation and immunocytological methods have been used in order to determine a precise location within this space. Western blotting assays indicated that more than 70% of ACO antigens of the whole cell are recovered in freshly prepared protoplasts and that these ACO antigens are completely removed upon treatment of protoplasts with proteinase K. Immunocytolabelling showed a periplasmic ACO-antigen signal in protoplasts which is completely absent in proteinase K-treated protoplasts. Taken together, these data demonstrate that, in apple fruit, ACO is located at the external face of the plasma membrane. Possible interactions between the plasma membrane and ACO activity are discussed.Key words: ACC oxidase, Malus domestica, apple fruit protoplasts, plasma membrane, immunocytolocalization.   相似文献   

13.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

14.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

15.
The subcellular localization of the sites of 1-aminocyclopropane-1-carboxylic acid (ACC) conversion into ethylene was studied by comparing the specific radioactivity of ethylene evolved from the whole cells with that of intra- and extracellular pools of labelled ACC. We demonstrate that some cells cultured in vitro (Vitis vinifera L. cv. Muscat) or leaf tissues (Hordeum vulgare L. and Triticum aestivum L.) have two sites of ethylene production: (i) an external site, converting apoplastic ACC, located at the plasma membrane, and very sensitive to high osmotica and, (ii) an intracellular site, converting internal ACC and remaining unaffected even under severe plasmolysis. In other cells cultured in vitro (Vitis vinifera L. cv. Gamay) and pea leaves (Pisum sativum L.), only the intracellular site operates and ethylene production is almost unaffected by plasmolysis. Protoplasts obtained from plasmolysis-sensitive Muscat cells lose 97% of their capacity for ethylene production compared with the parent cell, while those from plasmolysisinsensitive Gamay cells retain up to 50%. Protoplasts from both Gamay and Muscat cells cultured for 8 d in vitro, recover the full capacity of ethylene production of the initial whole cells, whether or not they are allowed to reform their cell wall. Therefore, we exclude a cooperation between the cell wall and the plasma membrane in ethylene production.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme We are grateful to Dr. Philip John (Reading, UK) for useful discus sions made possible by a North Atlantic Treaty Organization Colla borative Grant (No. 0383/88) and Dr. Yves Meyer (Perpignan, France) for his collaboration in culturing protoplasts.  相似文献   

16.
Stem and leaf tissues of Stellaria longipes Goldie (prairie ecotype) exhibit circadian rhythmicity in the activity and mRNA abundance for 1-aminocyclopropane-1-carboxylic acid oxidase (EC 1.4.3). The steady-state mRNA levels and enzymatic activity levels fluctuated with a period of approximately 24 h and reached their maxima by the middle of the light phase and minima by the middle of the dark phase. The oscillations showed damping under constant light, constant dark and constant temperature conditions, indicating that the rhythm is entrained by an external signal. The results indicate that light/dark cycles have greater entraining effects than temperature cycles. A 15-min red light pulse, but not a blue light pulse, could reset rhythm in continuous darkness, suggesting the possible role of a red-light signal transduction pathway in the circadian regulation of 1-aminocyclopropane-1-carboxylic acid oxidase.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - DD continuous dark - LD light-dark - LL continuous light - ZT Zeitgeber time (start of light period for circadian entrainment) This study was supported by operating grants to C.C.C., and D.M.R. from the Natural Sciences and Engineering Research Council of Canada.The authors gratefully acknowledge the award of a Bettina Bahlsen memorial Graduate Scholarship by University of Calgary to A.K. We are grateful to Dr. M.M. Moloney for allowing the use of his laboratory facilities.  相似文献   

17.
G. Bufler  Y. Mor  M. S. Reid  S. F. Yang 《Planta》1980,150(5):439-442
The rise in ethylene production accompanying the respiration climacteric and senescence of cut carnation flowers (Dianthus caryophyllus L. cv. White Sim) was associated with a 30-fold increase in the concentration of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petals (initial content 0.3 nmol/g fresh weight). Pretreatment of the flowers with silver thiosulfate (STS) retarded flower senescence and prevented the increase in ACC concentration in the petals. An increase in ACC in the remaining flower parts, which appeared to precede the increase in the petals, was only partially prevented by the STS pretreatment. Addition of aminoxyacetic acid (2 mM) to the solution in which the flowers were kept completely inhibited accumulation of ACC in all flower parts.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA -aminoxyacetic acid - STS silver thiosulfate complex  相似文献   

18.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

19.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

20.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号