首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pollen grains in the atmosphere of Burdur have been studied for a two-year period (1996 through 1997) with a Durham sampler. A total of 11881 pollen grains belonging to 39 taxa have been identified and recorded with some unidentified ones. Of them, 5726 were identified in 1996 and 6155 in 1997. Of the total pollen grains, 76.51% were arboreal, 21.62% non-arboreal and 1.87% unidentified. The majority of the investigated pollen grains were from Pinus L., Cupressaceae, Gramineae, Quercus L., Platanus L., Chenopodiaceae/Amaranthaceae, Salix L., Cedrus L., Compositae, Juglans L. and Urticaceae respectively. The highest level of pollen concentration was in May.  相似文献   

2.
The airborne pollen grains of Afyon have been studied for a two-year period(1999-2000)with a Durham sampler,A total of 14367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones.Of them,6732 were identified in 1999 and 7635 in 2000.Of the total pollen grains,69.67% were arboreal,26.64% on-arboreal and 3.68% unidentified.The majority of the investigated pollen grains were from Pinus,Granineae,Cupressaceae,Platamus,Chenopodiaceae/Amaranthaceae,Quercus,Ailanthus,Moraceae,Juglans,Salix,Cedrus and Rosaceae.The highest level of pollen grains was in May.  相似文献   

3.
The airborne pollen grains of Afyon have been studied for a two-year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non-arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus, Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans, Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.  相似文献   

4.
The variation in airborne pollen concentration of the Zonguldak region, Turkey was studied for two consecutive years 2001-2002 using a Durham sampler. During this period, a total of 61 304 pollen grains belonging to 43 taxa were recorded. Of these 43 taxa, 26 belonged to arboreal and 17 to nonarboreal plants. The main pollen types were Pinaceae, Populus, Carpinus, Betula, Corylus, Fagus orientalis,Castanea sativa, Alnus glutinosa, Quercus, Cupressaceae, Chenopodiaceae and Gramineae, representing 96.7% of the pollen spectrum. Pollen concentration reached the highest level in March.  相似文献   

5.
The variation in airborne pollen concentration of the Zonguldak region.Turkey was studied for two consecutive years 2001-2002 using a Durham sampler.During this period.a total of 61 304 pollen grains belonging to 43 taxa were recorded.Of these 43 taxa.26 belonged to arboreal and 17 to nonarboreal plants.The main pollen types were Pinaceae,Populus,Carpinus,Betula,Corylus,Fagus orientalis,Castanea sativa,AInus glutinosa,Quercus,Cupressaceae,Chenopodiaceae and Gramineae.representing 96.7%of the pollen spectrum.Pollen concentration reached the highest level in March.  相似文献   

6.
Analysis of Airborne Pollen Fall in Edirne, Turkey   总被引:1,自引:0,他引:1  
In the atmosphere of Edirne 12691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm~2 were recorded in 2000 and a total of 6502 pollen grains per cm~2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp., Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp., Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

7.
In the atmosphere of Edirne 12 691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm2 were recorded in 2000 and a total of 6 502 pollen grains per cm2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp.,Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp.,Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp.,Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

8.
Airborne pollen grains in the atmosphere of Bozuyuk were investigated over a 2 yr period from 2000 to 2001 using a Durham sampler. A total number of pollen grains of 5 170 pollen grains belonging to 32 taxa were identified and recorded along with some unidentified pollen grains. Of all the pollen grains, 78.66% were arboreal, 19.20% were non-arboreal, and 2.12% were unidentified. The majority of pollen grains investigated were Pinus, Platanus, Quercus, Cupressaceae, Poaceae, Fagus, Salix, Rosaceae, Urticaceae, Asteraceae, and Chenopodiaceae. The maximum number of pollen grains was recorded in May.  相似文献   

9.
In this study, airborne pollen grains of Yalova province were investigated using VPSS 2000 from January to December 2004. During studying period, a total of 22409 pollen grains/m3 which belonged to 46 taxa and 74 unidentified pollen grains were recorded. From the identified taxa, 26 belong to arboreal and 20 to non-arboreal plants. Total pollen grains consist of 80.50% arboreal, 19.17% non-arboreal plants and 0.33% unidentified pollen grains. In the investigated region, from arboreal plant taxa Platanus spp. (29.08%), Cupressaceae/Taxaceae (21.22%), Pinus spp. (7.34%), Alnus spp. (4.75%), Castanea spp. (3.03%), Quercus spp. (3.07%), Olea spp. (2.50%), Acer spp. (2.21%), Corylus spp. (1.41%) and Fagus spp. (1.15%), and from non-arboreal plant taxa Poaceae (10.01%), Asteraceae (2.86%), Plantago spp. (1.47%) and Artemisia spp. (1.11%) were responsible for the greatest amounts of pollen.  相似文献   

10.
Atmospheric pollen was collected with a Burkard sporetrap in Ankara, Turkey from January 1993 to January1994. The sum of the annual totals of the dailyconcentration of pollen, belonging to 44 taxa, was57,735. A relatively high pollen concentration wasrecorded in June which could be caused by higher windspeed and lower rainfall. Pinaceae,Cupressaceae/Taxaceae, Gramineae, Platanus, Populus,Moraceae, Chenopodiaceae/Amaranthaceae, Acer, Quercus,Betula, Salix, Rumex and Plantago are found tobe the dominant pollen types in the atmosphere inAnkara.  相似文献   

11.
Adem Bicakci 《Biologia》2006,61(4):457-461
In this study, pollen grains were identified using Durham sampler in the atmosphere of Sakarya in 2000 and 2001. During these two years, a total of 10 805 pollen grains were recorded. A total of 5 386 pollen grains per cm2 were recorded in 2000 and a total of 5 419 pollen grains per cm2 in 2001. Pollen fall in the years 2000–2001 comprised grains belonging to 40 taxa and some unidentified pollen grains. Of these taxa, 22 belonged to arboreal and 18 taxa to non arboreal plants. Total pollen grains consisted of 69.45% grains from arboreal plants, 28.11% grains from non-arboreal plants and 2.44% unidentified pollen grains. In the region investigated, Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Salix sp., Platanus sp., Populus sp., Carpinus sp., Fagus sp., Chenopodiaceae/Amaranthaceae, Xanthium sp., Moraceae, Corylus sp., Fraxinus sp., and Urticaceae released the greatest amount of pollen. The season of maximum pollen fall was from March to May, with a prevalence of arboreal pollen in the first months, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

12.
Thc pollen grains in the atmosphere of Burdur have been studied for a two-year period(1996through 1997)with a Durham sampler.A total of 11 881 pollen grains belongins to 39 taxa have been identi-fied  相似文献   

13.
中山大学校园内空气中孢子花粉散布的初步调查   总被引:9,自引:0,他引:9  
郑卓 《生态科学》1994,(2):11-17
在中山大学校内安装的风标式收集器记录了1984年和1985年部分月份的空气孢粉散布情况,其结果基本反映出广州地区的空气孢粉散布规律。一年中的3~4月和10月前后分别是两个孢粉浓度的高峰期。该结果对物候学、医学和地学都具有一定的意义。  相似文献   

14.
Airborne pollen sampling in Toledo, Central Spain   总被引:2,自引:0,他引:2  
Toledo is one of the main tourist spots of Spain, attracting around two million visitors per year. Its geographical situation in the vast and scarcely monitored Region of Castilla La Mancha and the high number of tourists (especially in the spring) has resulted in the Spanish Aerobiology Network (REA) making this city a major study objective. Air monitoring studies carried out using REA sampling procedures commenced in October 2002. Thirty-two pollen types were identified during the sampling period (October 2002 to October 2004). The annual Pollen Index (PI) was 44124 for the agricultural year October 2002–October 2003, and 29666 in the same period of 2003–2004. The most abundant taxa were, in decreasing order of dominance: Cupressaceae, Quercus, Poaceae, Populus, Olea, Urticaceae, Platanus, Pinus and Ulmus. Other, less well-represented pollen taxa included Salix, Alnus, Fraxinus and Tamarix, which were characteristic of riverside areas, and Morus, Artemisia and Chenopodiaceae. The presence of Castanea pollen grains originating from chestnut crops far away from the city was clearly an example of long-distance transport. The highest concentrations of airborne pollen were detected from March to May and also in January, due to the flowering of Cupressaceae species. In general, there was a correlation between pollen and meteorological parameters: a positive correlation with temperature and a negative correlation with rainfall and humidity during the pre-peak period. A negative correlation between temperature and some tree pollen taxa was detected in the principal pollen period correlation analysis due to their long pollination periods.  相似文献   

15.
Several species of the Erica genus are broadly represented in northwest Spain, being among the shrubs that form the substitution stage following forest degradation as a result of human activity, caused mainly by fire or other antrophic causes. Therefore airborne pollen from Erica is frequent. From 1995 to 2002,an aerobiological study of Ericaceae family pollen was undertaken in the atmosphere of the city of Vigo (Northwest Spain) using a Lanzoni VPPS 2000 (Lanzoni srl, Bologna, Italy) sampler placed in the left margin of the Vigo fiord (42°14′15″ N, 8°43′30" W). Despite being a taxon of eminently entomophillous pollination,the pollen of Ericaceae was well represented in the atmosphere above the study zone. Erica arborea L. is the main species represented in the annual pollen curve. This taxon shows a long main pollen season and higher pollen concentrations were recorded during the months of April and May, which is why beekeepers place their beehives at specific locations in April to ensure a considerable contribution from this pollen to the composition of the honey. The maximum daily average concentration was detected in 1997, with a concentration of 156 grains/m3. Throughout the day, maximum values occur at 5/6 h and between 17:00 and 18:00 h. Finally, correlation statistical analyses were developed in order to determine the degree of association between the daily average of meteorological parameters and daily mean airborne pollen concentrations.Rainfall exerts a clear influence on Ericaceae pollen season characteristics, with precipitation registered in March being responsible for the decrease in total annual pollen values.  相似文献   

16.
17.
Abstract: Several species of the Erica genus are broadly represented in northwest Spain, being among the shrubs that form the substitution stage following forest degradation as a result of human activity, caused mainly by fire or other antrophic causes. Therefore airborne pollen from Erica is frequent. From 1995 to 2002, an aerobiological study of Ericaceae family pollen was undertaken in the atmosphere of the city of Vigo (Northwest Spain) using a Lanzoni VPPS 2000 (Lanzoni srl, Bologna, Italy) sampler placed in the left margin of the Vigo fiord (42°14'15 "N, 8°43'30" W). Despite being a taxon of eminently entomophillous pollination, the pollen of Ericaceae was well represented in the atmosphere above the study zone. Erica arborea L. is the main species represented in the annual pollen curve. This taxon shows a long main pollen season and higher pollen concentrations were recorded during the months of April and May, which is why beekeepers place their beehives at specific locations in April to ensure a considerable contribution from this pollen to the composition of the honey. The maximum daily average concentration was detected in 1997, with a concentration of 156 grains/m3. Throughout the day, maximum values occur at 5/6 h and between 17:00 and 18:00 h. Finally, correlation statistical analyses were developed in order to determine the degree of association between the daily average of meteorological parameters and daily mean airborne pollen concentrations. Rainfall exerts a clear influence on Ericaceae pollen season characteristics, with precipitation registered in March being responsible for the decrease in total annual pollen values.
(Managing editor: Ya-Qin HAN)  相似文献   

18.
Pollen data collected with a Hirst spore-trap from 1981 to 1988 are presented and related to flora, vegetation and climate of the city of Turin. A comparison of vegetational and aerosporological data collected in other European cities show that, from this point of view, Turin is more similar to the Central-European area than to the Mediterranean one.  相似文献   

19.
Airborne pollen grains in the atmosphere of Bozüyük were investigated over a 2 yr period from 2000 to 2001 using a Durham sampler. A total number of pollen grains of 5 170 pollen grains belonging to 32taxa were identified and recorded along with some unidentified pollen grains. Of all the pollen grains, 78.66%were arboreal, 19.20% were non-arboreal, and 2.12% were unidentified. The majority of pollen grains investigated were Pinus, Platanus, Quercus, Cupressaceae, Poaceae, Fagus, Salix, Rosaceae, Urticaceae,Asteraceae, and Chenopodiaceae. The maximum number of pollen grains was recorded in May.  相似文献   

20.
We aimed at the investigation of the airborne fungiand their outdoor incidence in five vegetable growingareas in Edirne province (Turkey) by exposing a petridish with potato dextrose agar medium to air for 15minutes and then counting the number of growingcolonies. Sampling procedure for fungi was performed6 times in research stations at an interval of onemonth between April–September 1996. From the 90petri dishes obtained fungi were isolated and 1166colonies were counted. 12 genera (Absidia,Alternaria, Aspergillus, Botryotrichum, Chlamydomyces,Cladosporium, Endocochlus, Fusarium, Nematochtonus,Penicillium, Trichoderma and Torula) and 25species were identified. Among them, Aspergillusclavato-nanica and Penicillium estinogenum arevery likely to be new records for Turkey. Cladosporium carpophilum and Alternariaalternata were the most abundant species in the studyarea. Correlation analyses were applied to the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号