首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
AA (arachidonic acid) hydroxylation to 20-HETE (20-hydroxyeicosatetraenoic acid) influences renal vascular and tubular function. To identify the CYP (cytochrome P450) isoforms catalysing this reaction in the mouse kidney, we analysed the substrate specificity of Cyp4a10, 4a12a, 4a12b and 4a14 and determined sex- and strain-specific expressions. All recombinant enzymes showed high lauric acid hydroxylase activities. Cyp4a12a and Cyp4a12b efficiently hydroxylated AA to 20-HETE with V(max) values of approx. 10 nmol x nmol(-1) x min(-1) and K(m) values of 20-40 microM. 20-Carboxyeicosatetraenoic acid occurred as a secondary metabolite. AA hydroxylase activities were approx. 25-75-fold lower with Cyp4a10 and not detectable with Cyp4a14. Cyp4a12a and Cyp4a12b also efficiently converted EPA (eicosapentaenoic acid) into 19/20-OH- and 17,18-epoxy-EPA. In male mice, renal microsomal AA hydroxylase activities ranged between approx. 100 (NMRI), 45-55 (FVB/N, 129 Sv/J and Balb/c) and 25 pmol x min(-1) x mg(-1) (C57BL/6). The activities correlated with differences in Cyp4a12a protein and mRNA levels. Treatment with 5alpha-dihydrotestosterone induced both 20-HETE production and Cyp4a12a expression more than 4-fold in male C57BL/6 mice. All female mice showed low AA hydroxylase activities (15-25 pmol x min(-1) x mg(-1)) and very low Cyp4a12a mRNA and protein levels, but high Cyp4a10 and Cyp4a14 expression. Renal Cyp4a12b mRNA expression was almost undetectable in both sexes of all strains. Thus Cyp4a12a is the predominant 20-HETE synthase in the mouse kidney. Cyp4a12a expression determines the sex- and strain-specific differences in 20-HETE generation and may explain sex and strain differences in the susceptibility to hypertension and target organ damage.  相似文献   

2.
3.
4.
5.
6.
Although all forms of vitamin E are absorbed, the liver preferentially secretes alpha-, but not gamma-tocopherol, into plasma. Liver alpha-tocopherol secretion is under the control of the alpha-tocopherol transfer protein (TTP). Therefore, to assess gamma-tocopherol bioactivities Ttpa-/-, +/- and +/+ mice were fed for 5 weeks diets containing gamma-tocopherol 550 (gamma-T550), gamma-tocopherol 60 (gamma-T60) mg/kg that also contained trace amounts of alpha-tocopherol, a vitamin E-deficient diet, or a control diet. Plasma and tissues from mice fed gamma-T550 diets were found to contain similar gamma- and alpha-tocopherol concentrations despite the high dietary gamma-tocopherol content; nervous tissues contained almost no gamma-tocopherol. Liver vitamin E metabolites (carboxyethyl hydroxychromans, CEHCs) were also measured. In mice with widely ranging liver alpha- (from 0.7 to 16 nmol/g) and gamma-tocopherol concentrations (0 to 13 nmol/g), hepatic alpha-CEHC was undetectable, but gamma-CEHC concentrations (0.1 to 0.8 nmol/g) were correlated with both alpha- and gamma-tocopherol concentrations (P < 0.004). Hepatic cytochrome P450s (CYPs) involved in vitamin E metabolism, Cyp4f and Cyp3a, were also measured. There were no variations in Cyp4f protein expression as related to diet or mouse genotype. However, Cyp3a was correlated (P < 0.0001) with liver alpha-, but not gamma-tocopherol concentrations. These data support the hypothesis that alpha-tocopherol modulates xenobiotic metabolism by increasing Cyp3a expression, gamma-CEHC formation, and the excretion of both gamma-tocopherol and gamma-CEHC.  相似文献   

7.
Modulation of hepatic and extrahepatic detoxication enzymes Cyp1a1, Cyp2a5, glutathione S-transferse Ya (GSTYa) and NAD(P)H:quinone oxidoreductase (QOR) dependent catalytic activity and mRNA levels were investigated at 1, 2, or 4 days in liver, lung, or kidney of male, adult CD57 Bl/6 mice treated sc with a single dose (85 micromol/kg) of sodium arsenite (As3+). Maximum decreases of total hepatic cytochrome P450 (CYP) monooxygenase content and catalytic activities, occurring at 24 h, corresponded with maximum increases of heme oxygenase (HO-1) in all tissues, as well as maximum plasma total bilirubin. Extrahepatic increases in CYP were observed only in non-AHR dependent isozymes in the kidney, where both Cyp2a5 mRNA and catalytic activity increased maximally 24 h after treatment. In contrast, no significant changes in Cyp2b1/2-dependent PROD or mRNA activity and decreases in Cyp1a1-dependent-EROD activity were noted 1, 2, or 4 days after treatment. Increases in QOR catalytic activities were observed in all tissues examined with increased mRNA in kidney. On the other hand, GSTYa catalytic activity and mRNA increases were only detected in kidney. This study demonstrates the differential modulation of CYP, QOR, and GST-Ya, important drug metabolizing enzymes after acute As3+ administration. The induction of Cyp2a5, QOR, and GSTYa catalytic activity and gene expression occurred primarily in kidney during or shortly after conditions of oxidant stress.  相似文献   

8.
Cushing's syndrome and systemic administration of glucocorticoids are associated with hypertension, but the underlying molecular mechanism is only partially understood. We have shown previously that dexamethasone downregulates the expression of the endothelial NO synthase (eNOS) gene in human endothelial cells and in the rat and that this may contribute to the blood pressure-raising effect of the steroid [Proc. Natl. Acad. Sci. USA 96 (1999) 13357]. In the current communication, we demonstrated that dexamethasone increased mean arterial blood pressure in wild-type C-57 Bl6 mice (eNOS+/+ mice), but had no effect on blood pressure in mice with a disrupted eNOS gene (eNOS-/- mice) derived from the same strain. The NOS inhibitor ethylisothiourea, used for control purposes, showed a hypertensive effect in eNOS+/+ mice, but no such effect in eNOS-/- mice. Serum NO2-/NO3- levels, an indicator of total body NO synthesis, decreased significantly when eNOS+/+ mice were treated with dexamethasone. eNOS-/- mice had lower serum NO2-/NO3- levels per se, which were not changed significantly by dexamethasone. Dexamethasone decreased the expression of eNOS in three major organs of the mouse investigated, namely the heart, the liver, and the kidney. We conclude that the expressional downregulation of eNOS and the ensuing reduction in vascular NO production contributes to the hypertension caused by glucocorticoids.  相似文献   

9.
Previous studies demonstrated that chronic dermal exposure to the pesticide adjuvant (surfactant), Toximul (Tox), has significant detrimental effects on hepatic lipid metabolism. This study demonstrated that young mice dermally exposed to Tox for 12 days have significant increases in expression of peroxisomal acyl-CoA oxidase (mRNA and protein), bifunctional enzyme (mRNA) and thiolase (mRNA), as well as the P450 oxidizing enzymes Cyp4A10 and Cyp4A14 (mRNA and protein). Tox produced a similar pattern of increases in wild type adult female mice but did not induce these responses in PPARalpha-null mice. These data support the hypothesis that Tox, a heterogeneous blend of nonionic and anionic surfactants, modulates hepatic metabolism at least in part through activation of PPARalpha. Notably, all three groups of Tox-treated mice had increased relative liver weights due to significant accumulation of lipid. This could be endogenous in nature and/or a component(s) of Tox or a metabolite thereof. The ability of Tox and other hydrocarbon pollutants to induce fatty liver despite being PPARalpha agonists indicates a novel consequence of exposure to this class of chemicals, and may provide a new understanding of fatty liver in populations with industrial exposure.  相似文献   

10.
11.
The effect of the synthetic glucocorticoid, dexamethasone, and phenobarbital upon the expression of Cyp2b9 and Cyp2b10, major CYP2B subfamilies in the mouse, was differentiated in C57BL/6 mouse liver and hepatocytes in primary culture. Overall expression was higher in the untreated female liver than in the male liver. More Cyp2b9 than Cyp2b10 mRNA was present in the female liver, whereas the level of Cyp2b10 was higher in the male. Phenobarbital increased Cyp2b10 expression more than did Cyp2b9 in both sexes. Treatment with dexamethasone markedly induced Cyp2b10 expression dose dependently, but simultaneously suppressed Cyp2b9 in both sexes. Evidence of this was obtained both in vivo and in hepatocyte culture. Furthermore, the existence of at least two unknown species of CYP2B, whose expressions were either increased or decreased by dexamethasone was suggested. Adrenalectomy increased the expression of Cyp2b9 and Cyp2b10 mRNAs, especially that of Cyp2b9 in the male liver. In addition, the expression of one unknown species which was constitutively suppressed increased in adrenalectomized male mice. That the treatment of dexamethasone or adrenalectomy altered the expression of CYP2B subfamilies suggests that endogenous glucocorticoid hormone plays a basic role in the constitutive expression of cytochrome P450. Furthermore, the sex-related difference in the expression of Cyp2b9 and Cyp2b10 suggests that sex-dependent secretion of endogeneous modulating factors is involved in the regulatory pathway.  相似文献   

12.
The nuclear receptor constitutive androstane receptor (CAR) (NR1I3) regulates hepatic genes involved in xenobiotic detoxification as well as genes involved in energy homeostasis. We provide data that extend the role of CAR to regulation of serum triglyceride levels under conditions of metabolic/nutritional stress. The typically high serum triglyceride levels of ob/ob mice were completely normalized when crossed onto a Car(-/-) (mice deficient for the Car gene) genetic background. Moreover, increases in serum triglycerides observed after a high-fat diet (HFD) regime were not observed in Car(-/-) animals. Conversely, pharmacological induction of CAR activity using the selective mouse CAR agonist TCPOBOP during HFD feeding resulted in a CAR-dependent increase in serum triglyceride levels. A major regulator of hepatic fatty oxidation is the nuclear receptor PPARalpha (NR1C1). The expression of peroxisome proliferator-activated receptor alpha (PPARalpha) target genes was inversely related to the activity of CAR. Consistent with these observations, Car(-/-) animals exhibited increased hepatic fatty acid oxidation. Treatment of mice with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) significantly decreased expression of PPARalpha mRNA as well as Cyp4a14, CPT1alpha, and cytosolic Acyl-CoA thioesterase (CTE) in the liver. These data have implications in disease therapy such as for diabetes and nonalcoholic steatohepatitis (NASH).  相似文献   

13.
14.
Peroxisome proliferator-activated receptor (PPAR) alpha, a member of the ligand-activated nuclear receptor superfamily, plays an important role in lipid metabolism and glucose homeostasis and is highly expressed in the kidney. The present studies were aimed at testing the hypothesis that PPARalpha knockout mice would exhibit decreased radiation-induced apoptosis due to exacerbated activation of NF-kappaB (NFKB) and expression of pro-survival factors. Thirty wild-type mice (29S1/SvImJ) and 30 PPARalpha knockout mice were irradiated with a single total-body dose 10 Gy of (137)Cs gamma rays; controls were sham-irradiated. Tissue samples were collected at 3, 6, 12, 24 and 48 h postirradiation. Apoptosis was quantified using immunohistochemical staining for apoptotic bodies and cleaved caspase 3. Radiation-induced apoptosis was observed in both mouse strains in a time-dependent manner. However, the level of apoptosis was significantly suppressed in PPARalpha knockout mice compared with wild-type mice at 6 h postirradiation (P < 0.05). This inhibition of radiation-induced apoptosis was associated with time-dependent increases in NF-kappaB DNA-binding activity, IkappaBalpha phosphorylation, and expression of other antiapoptosis factors in the PPARalpha knockout mouse kidneys but not in wild-type animals. These data support the hypothesis that the loss of PPARalpha expression leads to the suppression of radiation-induced apoptosis in the mouse kidney, mediated through activation of NF-kappaB and up-regulation of anti-apoptosis factors.  相似文献   

15.
Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.  相似文献   

16.
Long DJ  Jaiswal AK 《Gene》2000,252(1-2):107-117
The mouse NQO2 cDNA and gene with flanking regions were cloned and sequenced. Analysis of the primary structure of the mouse NQO2 protein revealed the presence of glycosylation, myristylation, protein kinase C and caseine kinase II phosphorylation sites. These sites are conserved in the human NQO2 protein. The mouse NQO2 gene promoter contains several important cis-elements, including the antioxidant response element (ARE), the xenobiotic response element (XRE), and an Sp1 binding site. Northern analysis of eight mouse tissues indicated wide variations in the expression of the NQO2 and NQO1 genes. NQO2 gene expression was higher in liver and testis compared with the NQO1 gene, which was highest in the heart. NQO1 gene expression was undetectable in the testis. Mouse kidney showed significantly higher expression levels of NQO1 compared with NQO2. Brain, spleen, lung, and skeletal muscle showed undetectable levels of NQO2 and NQO1 gene expression. NQO2 activity followed a more or less similar pattern of tissue-specific expression as NQO2 RNA. Interestingly, the NQO2 activity remained unchanged in the NQO1-/-mice tissues compared with NQO1+/+ mice, with the exception of the liver. The livers from NQO1-/-mice showed a 45% increase in NQO2 activity compared with the NQO1+/+ mice. The mouse NQO2 cDNA was subcloned into the pMT2 eukaryotic expression vector which, upon transfection in monkey kidney COS1 cells, produced a significant increase in NQO2 activity. Deletion of 54 amino acids from the N-terminus of the mouse NQO2 protein resulted in the loss of NQO2 expression and activity in transfected COS1 cells. This indicates that deletion of exon(s) encoding the N-terminus of NQO2 from the endogenous gene in mouse embryonic (ES) stem cells should result in NQO2-null mice.  相似文献   

17.
Mice without oxysterol 7alpha-hydroxylase, an enzyme of the alternate bile acid synthesis pathway with a sexually dimorphic expression pattern, were constructed by the introduction of a null mutation at the Cyp7b1 locus. Animals heterozygous (Cyp7b1(+/-)) and homozygous (Cyp7b1(-/-)) for this mutation were grossly indistinguishable from wild-type mice. Plasma and tissue levels of 25- and 27-hydroxycholesterol, two oxysterol substrates of this enzyme with potent regulatory actions in cultured cells, were markedly elevated in Cyp7b1(-/-) knockout animals. Parameters of bile acid metabolism as well as plasma cholesterol and triglyceride levels in male and female Cyp7b1(-/-) mice were normal. The cholesterol contents of major tissues were not altered. In vivo sterol biosynthetic rates were unaffected in multiple tissues with the exception of the male kidney, which showed a approximately 40% decrease in de novo synthesis versus controls. We conclude that the major physiological role of the CYP7B1 oxysterol 7alpha-hydroxylase is to metabolize 25- and 27-hydroxycholesterol and that loss of this enzyme in the liver is compensated for by increases in the synthesis of bile acids by other pathways. A failure to catabolize oxysterols in the male kidney may lead to a decrease in de novo sterol synthesis.  相似文献   

18.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

19.
The bile acid receptor farnesoid X receptor (FXR) is a key regulator of hepatic defense mechanisms against bile acids. A comprehensive study addressing the role of FXR in the coordinated regulation of adaptive mechanisms including biosynthesis, metabolism, and alternative export together with their functional significance is lacking. We therefore fed FXR knockout (FXR(-/-)) mice with cholic acid (CA) and ursodeoxycholic acid (UDCA). Bile acid synthesis and hydroxylation were assessed by real-time RT-PCR for cytochrome P-450 (Cyp)7a1, Cyp3a11, and Cyp2b10 and mass spectrometry-gas chromatography for determination of bile acid composition. Expression of the export systems multidrug resistance proteins (Mrp)4-6 in the liver and kidney and the recently identified basoalteral bile acid transporter, organic solute transporter (Ost-alpha/Ost-beta), in the liver, kidney, and intestine was also investigated. CA and UDCA repressed Cyp7a1 in FXR(+/+) mice and to lesser extents in FXR(-/-) mice and induced Cyp3a11 and Cyp2b10 independent of FXR. CA and UDCA were hydroxylated in both genotypes. CA induced Ost-alpha/Ost-beta in the liver, kidney, and ileum in FXR(+/+) but not FXR(-/-) mice, whereas UDCA had only minor effects. Mrp4 induction in the liver and kidney correlated with bile acid levels and was observed in UDCA-fed and CA-fed FXR(-/-) animals but not in CA-fed FXR(+/+) animals. Mrp5/6 remained unaffected by bile acid treatment. In conclusion, we identified Ost-alpha/Ost-beta as a novel FXR target. Absent Ost-alpha/Ost-beta induction in CA-fed FXR(-/-) animals may contribute to increased liver injury in these animals. The induction of bile acid hydroxylation and Mrp4 was independent of FXR but could not counteract liver toxicity sufficiently. Limited effects of UDCA on Ost-alpha/Ost-beta may jeopardize its therapeutic efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号