首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The properties of α-glucosidase activity located at the tip of the labellar chemosensory seta of the blowfly were examined using the ultramicro method for determination of hexose. The enzyme activity was independent over a wide range of pH (3·0–8·0) and inhibited by Tris in a competitive manner and by Ca2+ ion in low concentration. By comparison of the present results with those for the α-glucosidase isozymes in the extract from the proboscis, it became clear that the enzyme in the intact state had properties to distinguish it from the enzyme in the soluble form. Furthermore, apparent similarities were observed between the properties of the enzyme in the intact state and those of the labellar sugar receptor examined electrophysiologically.  相似文献   

2.
α-Glucosidase activity was detected at the tip of the labellar contact chemosensory hair of the blowfly, Phormia regina. The enzyme split about 1 pmole of sucrose per hr per hair on average and the Michaelis constant for sucrose was about 50 mM. The activity of the enzyme was not solubilized into the incubation solution, but stuck stably to the tip of the sensory hair. From the cut end of the sensory hair a high activity of α-glucosidase eluted out. But its Michaelis constant was smaller by far than the one at the tip, suggesting that different types of α-glucosidase isozymes exist in the hair. The possibility that the enzyme at the tip of the sensory hair could be the sugar receptor is discussed.  相似文献   

3.
In the labellar sugar receptor cell of the blowfly, Phormia regina, soluble starch and dextran T500 inhibited the response to sucrose, to maltose or to glucose, but did not inhibit that to fructose. On the other hand, inulin inhibited the response to fructose, but did not inhibit that to sucrose. These results suggest that both soluble starch and dextran T500 compete with sucrose, with maltose or with glucose for the pyranose site (P site), and that inulin competes with fructose for the furanose site (F site) in a single sugar receptor cell. Each inhibition constant (Ki) was estimated to be 0.6–0.7% for soluble starch. about 4.5% for dextran T500, and about 1.3% for inulin.  相似文献   

4.
The chimeric α-glucosidases of Mucor javanicus and Aspergillus oryzae, which has high activity toward not only maltooligosaccharides but also soluble starch and has high activity toward maltooligosaccharides but faint activity toward soluble starch, respectively, were constructed by shuffling the C-terminal regions where low homology is observed between the two enzymes. The chimera genes were expressed in Pichia pastoris to produce and secrete the enzymes that have predicted molecular masses in the culture medium. The two chimeric M. javanicus α-glucosidases, of which the N- and C-terminal regions are substituted for those of A. oryzae, respectively, decreased in soluble starch-hydrolyzing activity, however, increased in maltose-hydrolyzing activity by 2.1 and 4.9 times higher than that of the native form of M. javanicus α-glucosidase, respectively. The chimeric enzymes changed on the Vmax values for maltose significantly, whereas the Km values were similar to that of the native enzyme.  相似文献   

5.
A gas-liquid chromatographic method was applied to the determination of anomeric forms of sugar produced by carbohydrases. Anomeric forms of glucose released from maltotriose, phenyl α-maltoside and phenyl α-glucoside were determined quantitatively. Thirteen α-glucosidases tested, including α-glucosidase from honey bee and acid α-glucosidase from pig′s liver, were found to produce α-glucose exclusively, and two kinds of glucoamylases, only β-glucose. This method proved very useful for the determination of the anomeric forms of sugar produced. It was confirmed that mammalian acid α-glucosidase does not belong to the category of exo-1,4-α-glucosidase (EC 3.2.1.3).  相似文献   

6.
Although some α-glucosidases from the α-amylase family (glycoside hydrolase family GH13) have been studied extensively, their exact number, organization on the chromosome, and orthology/paralogy relationship were unknown. This was true even for important disease vectors where gut α-glucosidase is known to be receptor for the Bin toxin used to control the population of some mosquito species. In some cases orthologs from related species were studied intensively, while potentially important paralogs were omitted. We have, therefore, used a bioinformatics approach to identify all family GH13 α-glucosidases from the selected species from Metazoa (including three mosquito species: Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus) as well as from Fungi in an effort to characterize their arrangement on the chromosome and evolutionary relationships among orthologs and among paralogs. We also searched for pseudogenes and genes coding for enzymatically inactive proteins with a possible new function. We have found GH13 α-glucosidases mostly in Arthropoda and Fungi where they form gene families, as a result of multiple lineage-specific gene duplications. In mosquito species we have identified 14 α-glucosidase (Aglu) genes of which only five have been biochemically characterized so far, two are putative pseudogenes and the rest remains uncharacterized. We also revealed quite a complex evolutionary history of the eukaryotic α-glucosidases probably involving multiple losses of genes or horizontal gene transfer from bacteria.  相似文献   

7.
Three kinds of α-glucosidases, I, II, and III, were purified from European honeybees, Apis mellifera L. In addition, an α-glucosidase was also purified from honey. Some properties, including the substrate specificity of honey α-glucosidase, were almost the same as those of α-glucosidase III. Specific antisera against the α-glucosidases were prepared to examine the localization of α-glucosidases in the organs of honeybees. It was immunologically confirmed for the first time that α-glucosidase I was present in ventriculus, and α-glucosidase II, in ventriculus and haemolymph. α-Glucosidase III, which became apparent to be honey α-glucosidase, was present in the hypopharyngeal gland, from which the enzyme may be secreted into nectar gathered by honeybees. Honey may be finally made up through the process whereby sucrose in nectar, in which glucose and fructose also are naturally contained, is hydrolyzed by secreted α-glucosidase III.  相似文献   

8.
Natural α-glucosidase inhibitors (aGIs) are of great interest as an efficacious and safe therapy for type 2 diabetes, which is an ongoing global health issue. The aim of this study is to utilize shrimp head powder (SHP), an abundant and low-cost material, for the biosynthesis, isolation, and identification of active antidiabetic compounds. SHP was efficiently converted to aGIs via Paenibacillus sp. TKU042 fermentation. Fermented SHP (fSHP) by this strain possesses high pH stability, and stronger yeast α-glucosidase inhibitory activity (92%) than that of acarbose (60%). aGI productivity increased more than 2-fold after optimization (from 225 U/mL to 560 U/mL). Further bioactivity-guided isolation of two major active compounds were identified as nicotinic acid and adenine. Notably, these inhibitors were non-sugar-based moiety aGIs, which is newly isolated and identified from fSHP in this study. In the tests of specific enzyme inhibitory activity, adenine showed highly specific inhibition against yeast α-glucosidase (IC50 = 22 μg/mL); nicotinic acid demonstrated good effect on rat α-glucosidase (IC50 = 70 μg/mL); while acarbose possessed efficient effect on bacteria, rice, and rat α-glucosidases (IC50 = 0.03–108 μg/mL). The current results suggest that it is cost-effective to produce potent aGIs from SHP via Paenibacillus conversion, and these active constituents may be useful in type 2 diabetes management.  相似文献   

9.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

10.
A new series of N-acylhydrazone derivatives of 2-mercaptobenzimidazole (2-MBI) has been synthesized through S-alkylation with 1-bromotetradecane and N-alkylation with ethyl-2-chloroacetate. The resulting ester was synthetically modified through hydrazine hydrate to acyl hydrazide which was condensed with aromatic aldehydes to afford the title N-acylhydrazones (4-17). Chemical structures of the newly synthesized compounds have been confirmed through mass, FT-IR and 1HNMR techniques. In vitro free radical scavenging and α-glucosidase inhibition activities of the compounds were investigated with reference to the standard ascorbic acid and acarbose, respectively. Amongst the target compounds, 13 showed the highest inhibition in DPPH scavenging assay (IC50 = 131.50 µM) and α-glucosidase inhibition potential (IC50 = 352 µg/ml). We extended our investigations to explore the mechanism of enzyme inhibition and conducted docking analysis by using Molecular Operating Environment (MOE 2016.08). A homology model for α-glucosidase was constructed and validated using Ramachandran plot. Docking studies were also carried out on human intestinal α-glucosidases. In view of the importance of the nucleus involved, the synthesized compounds might find extensive medicinal applications as reported in the literature.  相似文献   

11.
The hypoglycaemic effects of two Ribes sp. i.e., anthocyanin-rich black currants (BC) were compared to green currants (GC), which are low in anthocyanins to establish which compounds are involved in the regulation of postprandial glycaemia. We determined the effect of the currants on inhibiting carbohydrate digestive enzymes (α-amylase, α-glucosidase), intestinal sugar absorption and transport across CaCo-2 cells. The digestion of these currants was modelled using in vitro gastrointestinal digestion (IVGD) to identify the metabolites present in the digested extracts by LC–MS/MS. Freeze-dried BC and IVDG extracts inhibited yeast α-glucosidase activity (P<.0001) at lower concentrations than acarbose, whereas GC and IVDG GC at the same concentrations showed no inhibition. BC and GC both showed significant inhibitory effects on salivary α-amylase (P<.0001), glucose uptake (P<.0001) and the mRNA expression of sugar transporters (P<.0001). Taken together this suggests that the anthocyanins which are high in BC have their greatest effect on postprandial hyperglycaemia by inhibiting α-glucosidase activity. Phytochemical analysis identified the phenolics in the currants and confirmed that freeze-dried BC contained higher concentrations of anthocyanins compared to GC (39.80 vs. 9.85 g/kg dry weight). Specific phenolics were also shown to inhibit salivary α-amylase, α-glucosidase, and glucose uptake. However, specific anthocyanins identified in BC which were low in GC were shown to inhibit α-glucosidase. In conclusion the anthocyanins in BC appear to regulate postprandial hyperglycaemia primarily but not solely by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters which together could lower the associated risk of developing type-2 diabetes.  相似文献   

12.
Kim KY  Nam KA  Kurihara H  Kim SM 《Phytochemistry》2008,69(16):2820-2825
Diabetes mellitus is a most serious and chronic disease whose incidence rates are increasing with incidences of obesity and aging of the general population over the world. One therapeutic approach for decreasing postprandial hyperglycemia is to retard absorption of glucose by inhibition of α-glucosidase. Two bromophenols, 2,4,6-tribromophenol and 2,4-dibromophenol, were purified from the red alga Grateloupia elliptica. IC50 values of 2,4,6-tribromophenol and 2,4-dibromophenol were 60.3 and 110.4 μM against Saccharomyces cerevisiae α-glucosidase, and 130.3 and 230.3 μM against Bacillus stearothermophilus α-glucosidase, respectively. In addition, both mildly inhibited rat-intestinal sucrase (IC50 of 4.2 and 3.6 mM) and rat-intestinal maltase (IC50 of 5.0 and 4.8 mM). Therefore, bromophenols of G. elliptica have potential as natural nutraceuticals to prevent diabetes mellitus because of their high α-glucosidase inhibitory activity.  相似文献   

13.
Multiple forms of neutral α-glucosidase (pH optima, 6.0~6.5) were purified from pig duodenal mucosa by a procedure including Triton X-100 treatment, fractionation with ammonium sulfate, fractionation with ethyl alcohol, DEAE-cellulose column chromatography and preparative polyacrylamide disc gel electrophoresis. All of the α-glucosidases, Ia, IIa, Ib and IIb, were found to be homogeneous on polyacrylamide disc gel electrophoresis. The molecular weights, isoelectric points and optimum temperatures of α-glueosidases Ia and IIa were 145,000~150,000, pH 3.5~3.7 and 55°C, respectively, and both enzymes were stable up to 55°C on treatment at pH 6.0 for 15 min; whereas those of the other two α-glucosidases, Ib and IIb, were 80,000, pH 4.0~4.1 and 65°C, respectively, and both enzymes were stable up to 70°C on the same treatment. The Km values of enzyme IIa for maltose, maltotriose and amylose were 1.72mm, 0.37 mm and 1.67mg/ml, while those of enzyme IIb were 3.33 mm, 2.61 mm and 11.8 mg/ml, respectively. All enzyme hydrolyzed α-1,4-, α-1,3- and α-1,2-glucosidic linkages in substrates, but showed no activity on sucrose or isomaltose. Enzymes IIa and IIb hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside, and maltotriose was formed as the main α-glucosyltransfer product from maltose. It was revealed that two types of neutral α-glucosidases having no activity toward sucrose or isomaltose existed in pig duodenal mucosa, and that one type comprised α-glucosidase having both maltose- and amylaceous α-glucan-hydrolyzing activities and the other type heat-stable maltooligosaccharidases which hydrolyzed amylaceous α-glucan weakly.  相似文献   

14.
Two kinds of αglucosidase which were homogeneous in disc electrophoretic and ultra-centrifugal analysis were isolated from rice seeds by means of ammonium sulfate fractionation and CM-cellulose, Sephadex G–100 and DEAE-cellulose column chromatography and designated as α-glucosidase I and α-glucosidase II.

Both α-glucosidases hydrolyzed maltose and soluble starch to glucose and showed same optimal pH (4.0) on the both substrates. In addition, both enzymes acted on various α-linked gluco-oligosaccharides and soluble starch but little or not on α-linked hetero-glucosides and α-l,6-glucan (dextran).

Activity of the enzymes on maltose and soluble starch was inhibited by Tris and erythritol. α-Glucosidase II was more sensitive to the inhibitors than α-glucosidase I.

Km value for maltose was 1.1 mM for α-glucosidase I and 2.0 mM for α-glucosidase II.  相似文献   

15.
Beside other pharmaceutical benefits, flavonoids are known for their potent α-glucosidase inhibition. In the present study, we investigated α-glucosidase inhibitory effects of structurally related 11 flavonols, among which quercetin-3-O-(3″-O-galloyl)-β-galactopyranoside (8) and quercetin 3-O-(6″-O-galloyl)-β-glucopyranoside (9) showed significant inhibition compared to the positive control, acarbose, with IC50 values of 0.97 ± 0.02 and 1.35 ± 0.06 µM, respectively. It was found that while sugar substitution to C3-OH of C ring reduced the α-glucosidase inhibitory effect, galloyl substitution to these sugar units increased it. An enzyme kinetics analysis revealed that 7 was competitive, whereas 1, 2, 8, and 9 were uncompetitive inhibitors. In the light of these findings, we performed molecular docking studies to predict their inhibition mechanisms at atomic level.  相似文献   

16.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   

17.
《Insect Biochemistry》1990,20(6):619-623
An α-glucosidase from the adult salivary glands of the vector mosquito, Aedes aegypti, was characterized. The α-glucosidase is a soluble glycoprotein with Mr 68,000 that is secreted when mosquitoes take a sugar meal. Total activity in the salivary glands is equal between males and females with 82% of the activity in female glands being present in the proximal-lateral lobes. The characteristics of the α-glucosidase correlate well with the putative protein encoded by the Maltase-like I gene. The α-glucosidase is most likely involved in sugar digestion.  相似文献   

18.
The effects of amino acids on the labellar hair chemosensory cells were examined with two kinds of flies (the fleshfly, Boettcherisca peregrina, and the blowfly, Phormia regina). As a result of this examination, the effects of amino acids were divided into four main classes. Amino acids in class 1 did not stimulate any chemoreceptor cell. Amino acids in class 2 inhibited nonspecifically the discharges from three kinds of chemosensory cells. Amino acids in class 3 stimulated the salt receptor cell. Amino acids in class 4 stimulated the sugar receptor cell. A possibility that a fourth neuron in the labellar hair chemosensory cell might be a protein or an amino acid receptor cell was eliminated.  相似文献   

19.
Glycosidases are very important enzymes involved in a variety of biochemical processes with a special importance to biotechnology, food industry, and pharmacology. Novel structurally simple inhibitors derived from cyclohexane-1,2-dicarboxylic acids were synthesized and tested against several fungal glycosidases from Aspergillus oryzae and Penicilliumcanescens. The presence of at least two carboxylic groups and one hydroxy group was essential for efficient inhibition. Significant selective inhibition was observed for α- and β-glucosidases, the magnitude of which depended on the configuration of substituents; inhibition increased for β-glucosidase by lengthening the alkoxy group of the inhibitor.  相似文献   

20.
Previously reported PII-type α-glucosidase located in the precipitate of the labellar homogenate of the blowfly Phormia regina was solubilized by sodium deoxycholate (DOC) and further separated into three isozymes with different molecular weight: PII-M (mol. wt 9 × 104). PII-D (mol. wt 2 × 105) and PII-T (mol. wt 8 × 105) by molecular sieve chromatography on Biogel P-300 or Ultragel AcA-34. These three isozymes had almost the same Km's and relative values of Vm's for several substrates, suggesting that they had the same common active site.PII-D and PII-T are more strongly embedded in the membrane than PII-M, because the proportion of PII-D and PII-T was much increased when the remaining glucosidase in the precipitate after the first solubilization was reextracted by DOC. A large peak of α-glucosidase isozyme P-IV which preferentially hydrolyze sucrose eluted just after P-II (soluble P-II) when the supernatant fraction of the labellar homogenate was chromatographed on DEAE-Sephadex A-50. P-IV was scarcely present in the precipitate fraction.Soluble P-II had the same mol. wt as PII-M and had similar properties to PII-M except for the ratio of Vm's.A large proportion of PII-D was contained in the well washed labellar integuments, a preparation rich in labellar chemosensilla. It suggests that most of the insoluble α-glucosidase contained in the dendrite in labellar chemosensilla is PII-D. PII-D (and PII-T) are possible sites of the pyranose receptor molecule because their properties and localization agree well with those of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号