首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell division is a dynamic process ending by separation of the daughter cells. This final step requires the cleavage of the murein septum synthetized during cell division. In Streptococcus thermophilus, cse plays an important role in cell separation. Cse protein contains, at its N-terminal end, a signal peptide and a putative LysM motif suggesting that it is secreted and able to bind to the cell wall. Furthermore, the C-terminus of Cse carries a putative cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain conferring to the protein a potential catalytic activity. To gain insight into the role of Cse in the cell division process, in silico analysis of the Firmicutes proteins displaying CHAP-related domain was undertaken. This work allowed us to distinguish and characterize within the Firmicutes the 2 families of proteins (CHAP and NlpC/p60) belonging to the CHAP superfamily. These 2 families regroup mainly peptidoglycan hydrolases. Data from the literature indicate that NlpC/p60 and CHAP proteins cleave distinct peptidoglycan bonds. Among the enzymes characterized within the Firmicutes, NlpC/p60 proteins are gamma-D-glutamate-meso-diaminopimelate muropeptidase. Instead, CHAP enzymes involved in cell separation are N-acetylmuramoyl-L-alanine amidase and CHAP lysins have endopeptidase activity.  相似文献   

2.
EhABP-120 is the first filamin identified in the parasitic protozoan Entamoeba histolytica. Filamins are a family of cross-linking actin-binding proteins that promote a dynamic orthogonal web. They have been reported to interact directly with more than 30 cellular proteins and some phosphoinositides. The biochemical consequences of these interactions may have either positive or negative effects on the cross-linking function and also form a link between the cytoskeleton and plasma membrane. In this study, the EhABP-120 carboxy-terminal domain (END) was biochemically characterized. This domain was able to associate to 3-sulfate galactosyl ceramide, a new lipid target for a member of the filamin family. Also, the END domain was able to dimerize “in vitro.” Molecular modeling analysis showed that the dimeric region is stabilized by a disulfide bond. Electrostatic and docking studies suggest that an electropositive concave pocket at the dimeric END domain interacts simultaneously with several sulfogalactose moieties of the sulfatide.  相似文献   

3.
CFE88 is a conserved essential gene product from Streptococcus pneumoniae. This 227-residue protein has minimal sequence similarity to proteins of known 3D structure. Sequence alignment models and computational protein threading studies suggest that CFE88 is a methyltransferase. Characterization of the conformation and function of CFE88 has been performed by using several techniques. Backbone atom and limited side-chain atom NMR resonance assignments have been obtained. The data indicate that CFE88 has two domains: an N-terminal domain with 163 residues and a C-terminal domain with 64 residues. The C-terminal domain is primarily helical, while the N-terminal domain has a mixed helical/extended (Rossmann) fold. By aligning the experimentally observed elements of secondary structure, an initial unrefined model of CFE88 has been constructed based on the X-ray structure of ErmC' methyltransferase (Protein Data Bank entry 1QAN). NMR and biophysical studies demonstrate binding of S-adenosyl-L-homocysteine (SAH) to CFE88; these interactions have been localized by NMR to the predicted active site in the N-terminal domain. Mutants that target this predicted active site (H26W, E46R, and E46W) have been constructed and characterized. Overall, our results both indicate that CFE88 is a methyltransferase and further suggest that the methyltransferase activity is essential for bacterial survival.  相似文献   

4.
Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated with the development of palmoplantar hyperkeratosis in the congenital skin disorder Mal de Meleda. In the present study, we have characterized a new member of the LU-protein domain family, which we find to be predominantly expressed in the stratum granulosum of human skin, thus resembling the expression of SLURP-1. In accordance with its expression pattern, we denote this protein product, which is encoded by the LYPD5 gene, as Haldisin (human antigen with LU-domains expressed in skin). Two of the five human glycolipid-anchored membrane proteins with multiple LU-domains characterized so far are predominantly confined to squamous epithelia (i.e., C4.4A), to stratum spinosum, and Haldisin to stratum granulosum under normal homeostatic conditions. Whether Haldisin is a prognostic biomarker for certain epithelial malignancies, like C4.4A and SLURP-1, remains to be explored.  相似文献   

5.
6.
WD (tryptophan/aspartic acid) repeat proteins perform a wide variety of functions in eukaryotic cells. They are characterised by the presence of a number of conserved repeat motifs that contribute to the beta-propeller structures which are the common feature of this large group of proteins. We report here the properties of the first characterised member of this family in the American trypanosome, Trypanosoma cruzi (TcBPP1). In the CL Brener clone the protein is 482 amino acids long and is predicted to contain four WD repeat motifs, flanked by amino and carboxyl terminal extensions. TcBPP1 is a single copy gene present on a 1.0/1.6 Mb pair of homologous chromosomes in a locus that is syntenic with the corresponding regions of Trypanosoma brucei and Leishmania major chromosomes. Consistent with the proposed hybrid nature of the CL Brener clone, the proteins encoded by the two different alleles share only 97% identity at the amino acid level. To determine subcellular location, we examined transfected parasites for the distribution of green fluorescent protein (GFP) fused with different regions of TcBPP1. These studies demonstrated that a 115 amino acid peptide derived from the amino terminal domain of TcBPP1 is able to target GFP to the mitochondrion. Interestingly this region lacks a typical amino terminal presequence suggesting that mitochondrial import is mediated by an alternative targeting signal.  相似文献   

7.
The family of T-cell immunoglobulin domain and mucin domain (TIM) proteins is identified to be expressed on T cells. A member of Tim family, TIM-1, is considered as a membrane protein that is associated with the development of Th2 biased immune responses and may be selectively expressed on Th2 cells. In the present study, we analyzed the association of allele and genotype frequencies between asthma or atopy patients and the controls without asthma and atopy using large sample size at 5383_5397del and 5509_5511delCAA variations of Tim-1 gene. Although the allele frequency of 5509_5511delCAA variation in asthma was not significantly different (P=0.085), the genotype of 5509_5511delCAA variation in asthma was significantly associated with the susceptibility to asthma (P=0.037). The genotype and allele frequencies of 5383_5397del variation in atopic dermatitis were significantly different from those in the non-asthmatic and non-atopic controls (P=0.005 and P=0.002, respectively). Our results strongly suggest that the 5383_5397del variation site of Tim-1 exon 4 might be associated with atopic dermatitis susceptibility.  相似文献   

8.
Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number.  相似文献   

9.
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.  相似文献   

10.
Pseudomonas aeruginosa is a gram-negative bacterium, opportunistic pathogen, which causes severe acute or chronic infections, as is the case with cystic fibrosis patients. Chronic infections are frequently accompanied by the development of the bacterial population into a specialized community called biofilm. The pelA-G gene cluster of P. aeruginosa has been shown to be involved in pellicle production and biofilm formation. The pel genes have been proposed to contribute to the formation of the exopolysaccharide-containing pellicle. However, the function and the subcellular localization of the seven different Pel proteins are poorly understood. Based on bioinformatics analysis, we have previously considered that PelF is a putative glycosyltransferase (GT4 family), whereas PelG is a Wzx-like polysaccharide transporter from the PST family. In this study we have further characterized the PelC protein. We have shown that PelC is an outer membrane lipoprotein. The N-terminal signal peptide of the PelC lipoprotein is sufficient to target the protein into the membranes. However, by constructing various PelC hybrid proteins we also proposed that efficient and functional outer membrane insertion of PelC requires not only the signal peptide and the lipid modification, but also requires the C-terminal domain of PelC. Because the gene encoding the outer membrane lipoprotein PelC is part of a putative gene cluster involved in exopolysaccharide biogenesis, we suggest that PelC is a new member of the outer membrane auxiliary (OMA) family of lipoprotein whose Wza, involved in Escherichia coli capsular polysaccharide transport, is an archetype.  相似文献   

11.
Li SS  Claeson P 《Phytochemistry》2003,63(3):249-255
Through a reliable and repeatable procedure based on solid-phase extraction techniques, a protein fraction (P fraction) rich in Cys/Gly residues was extracted and captured from oat (Avena sativa L.) seeds. Quantitative amino acid analysis and MS of the P fraction indicated that it contains a series of heterogeneous Cys/Gly-rich proteins with molecular masses of 3.6-4.0 kDa. Preliminary results from bioassays showed that these proteins possess weak to moderate antifungal properties to some fungal strains. From this fraction, a new polypeptide, designated avesin A, was purified and sequenced by Edman degradation. Avesin A consists of 37 amino-acid residues, with 10 glycine residues and eight cysteine residues forming disulfide bridges, and contains a single chitin-binding domain, which indicates that avesin A is a new member of the putative chitin-binding proteins. Avesin A is the first identified hevein-like small protein from cereal grains.  相似文献   

12.
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 Å, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.  相似文献   

13.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type I motifs) family of proteases plays a role in pathological conditions including arthritis, cancer, thrombotic thrombocytopenic purpura and the Ehlers-Danlos type VIIC and Weill-Marchesani genetic syndromes. Here, we report the first crystal structures for a member of the ADAMTS family, ADAMTS-1. Originally cloned as an inflammation-associated gene, ADAMTS-1 has been shown to be involved in tissue remodelling, wound healing and angiogenesis. The crystal structures contain catalytic and disintegrin-like domains, both in the inhibitor-free form and in complex with the inhibitor marimastat. The overall fold of the catalytic domain is similar to related zinc metalloproteinases such as matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinases). The active site contains the expected organisation of residues to coordinate zinc but has a much larger S1' selectivity pocket than ADAM33. The structure also unexpectedly reveals a double calcium-binding site. Also surprisingly, the previously named disintegrin-like domain showed no structural homology to the disintegrin domains of other metalloproteinases such as ADAM10 but is instead very similar in structure to the cysteine-rich domains of other metalloproteinases. Thus, this study suggests that the D (for disintegrin-like) in the nomenclature of ADAMTS enzymes is likely to be a misnomer. The ADAMTS-1 cysteine-rich domain stacks against the active site, suggesting a possible regulatory role.  相似文献   

14.
The structure of a novel c(7)-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 A resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c(7)-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c(7) molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, E(app), of domain C is -105 mV, 50 mV higher than that of PpcA.  相似文献   

15.
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately + 2 kcal mol− 1. There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of + 2 kcal mol− 1. This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.  相似文献   

16.
Recent studies have demonstrated that bacteria possess an essential protein translocation system similar to mammalian signal recognition particle (SRP). Here we have identified the Ffh, a homologue of the mammalian SRP54 subunit from S. pneumoniae. Ffh is a 58-kDa protein with three distinct domains: an N-terminal hydrophilic domain (N-domain), a G-domain containing GTP/GDP binding motifs, and a C-terminal methionine-rich domain (M-domain). The full-length Ffh and a truncated protein containing N and G domains (Ffh-NG) were overexpressed in E. coli and purified to homogeneity. The full-length Ffh has an intrinsic GTPase activity with k(cat) of 0.144 min(-1), and the K(m) for GTP is 10.9 microM. It is able to bind to 4.5S RNA specifically as demonstrated by gel retardation assay. The truncated Ffh-NG has approximately the same intrinsic GTPase activity to the full-length Ffh, but is unable to bind to 4.5S RNA, indicating that the NG domain is sufficient for supporting intrinsic GTP hydrolysis, and that the M domain is required for RNA binding. The interaction of S. pneumoniae Ffh with its receptor, FtsY, resulted in a 20-fold stimulation in GTP hydrolysis. The stimulation was further demonstrated to be independent of the 4.5S RNA. In addition, a similar GTPase stimulation is also observed between Ffh-NG and FtsY, suggesting that the NG domain is sufficient and the M domain is not required for GTPase stimulation between Ffh and FtsY.  相似文献   

17.
18.
The product of the human Tre2 oncogene is structurally related to the Ypt/Rab GTPase-activating proteins (Ypt/Rab GAPs). Particularly, the oncoprotein shares with the yeast proteins Msb3p and Msb4p, and with the human protein RN-tre the highly conserved TBC domain, forming the catalytically active domain of Ypt/Rab GAPs. Yet, the Tre2 oncogene seems to encode a nonfunctional Rab GAP. As regions flanking the TBC domain may be crucial for catalytic activity, regions located N- and C-terminally with respect to this domain were explored. For this, chimeric proteins created by sequence exchanges between the Tre2 oncoprotein and RN-tre were tested for their ability to replace functionally the Msb3p and Msb4p proteins in double-mutant yeast cells. These complementation experiments revealed, in addition to the TBC domain, a second Tre2 region involved in the oncoprotein's lack of GAP activity: a 93-aa region flanking the TBC domain on the C-terminal side.  相似文献   

19.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

20.
Most protein domains are found in multi-domain proteins, yet most studies of protein folding have concentrated on small, single-domain proteins or on isolated domains from larger proteins. Spectrin domains are small (106 amino acid residues), independently folding domains consisting of three long alpha-helices. They are found in multi-domain proteins with a number of spectrin domains in tandem array. Structural studies have shown that in these arrays the last helix of one domain forms a continuous helix with the first helix of the following domain. It has been demonstrated that a number of spectrin domains are stabilised by their neighbours. Here we investigate the molecular basis for cooperativity between adjacent spectrin domains 16 and 17 from chicken brain alpha-spectrin (R16 and R17). We show that whereas the proteins unfold as a single cooperative unit at 25 degrees C, cooperativity is lost at higher temperatures and in the presence of stabilising salts. Mutations in the linker region also cause the cooperativity to be lost. However, the cooperativity does not rely on specific interactions in the linker region alone. Most mutations in the R17 domain cause a decrease in cooperativity, whereas proteins with mutations in the R16 domain still fold cooperatively. We propose a mechanism for this behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号