首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-21 (IL-21) is a pleiotropic cytokine that regulates T-cell, B-cell, NK-cell, and myeloid-cell functions. IL-21 binds with its cognate receptor complex, which consists of the IL-21 receptor (IL-21R) and the common gamma chain (γc) receptor subunit. We identified novel IL-21R-binding molecule, WD-40 repeats containing SOCS-box-2, WSB-2. WSB-2 associated with the membrane-proximal intracytoplasmic region of IL-21R, including box1 and box2. Overexpression study of WSB-2 showed the reduction of IL-21R expression and IL-21-induced signal transduction. On the other hand, small interfering RNA for WSB-2 enhanced the expression level of IL-21R and IL-21-induced STAT3 activation, indicating that WSB-2 negatively controls the receptor expression. This report provides the first evidence that WSB-2 is a regulator of IL-21R expression and IL-21-induced signal transduction.  相似文献   

2.
Interleukin-21 (IL-21) is a pleiotropic cytokine that regulates T-cell, B-cell, NK-cell, and myeloid-cell functions. IL-21 binds with its cognate receptor complex, which consists of the IL-21 receptor (IL-21R) and the common gamma chain. We identified a novel IL-21R-binding molecule, WSB-1, which contains WD-40 repeats and a SOCS-box domain. WSB-1 associates with the middle part of intracytoplasmic region of IL-21R and enhances the maturation of IL-21R from N-linked glycosylated form to fully glycosylated mature form. Furthermore, WSB-1 moderates IL-21R degradation. Taken together, our present study suggests that WSB-1 has a role in the tuning of the maturation and degradation of IL-21R.  相似文献   

3.
Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the nuclear protein kinase family, which induces both p53- and CtBP-mediated apoptosis. Levels of HIPK2 were increased by UV irradiation and cisplatin treatment, thereby implying the degradation of HIPK2 in cells under normal conditions. Here, we indicate that HIPK2 is ubiquitinated and degraded by the WD40-repeat/SOCS box protein WSB-1, a process that is blocked under DNA damage conditions. Yeast two-hybrid screening was conducted to identify the proteins that interact with HIPK2. WSB-1, an E3 ubiquitin ligase, was characterized as an HIPK2-interacting protein. The coexpression of WSB-1 resulted in the degradation of HIPK2 via its C-terminal region. Domain analysis of WSB-1 showed that WD40-repeats and the SOCS box were required for its interaction with and degradation of HIPK2, respectively. In support of the degradation of HIPK2 by WSB-1, HIPK2 was polyubiquitinated by WSB-1 in vitro and in vivo. The knockdown of endogenous WSB-1 with the expression of short hairpin RNA against WSB-1 increases the stability of endogenous HIPK2 and resulted in the accumulation of HIPK2. The ubiquitination and degradation of HIPK2 by WSB-1 was inhibited completely via the administration of DNA damage reagents, including Adriamycin and cisplatin. These findings effectively illustrate the regulatory mechanisms by which HIPK2 is maintained at a low level, by WSB-1 in cells under normal conditions, and stabilized by genotoxic stresses.  相似文献   

4.
Thyroid hormone activation is catalyzed by two deiodinases, D1 and D2. Whereas D1 is a stable plasma membrane protein, D2 is resident in the endoplasmic reticulum (ER) and has a 20-min half-life due to selective ubiquitination and proteasomal degradation. Here we have shown that stable retention explains D2 residency in the ER, a mechanism that is nevertheless over-ridden by fusion to the long-lived plasma membrane protein, sodium-iodine symporter. Fusion to D2, but not D1, dramatically shortened sodium-iodine symporter half-life through a mechanism dependent on an 18-amino acid D2-specific instability loop. Similarly, the D2-specific loop-mediated protein destabilization was also observed after D2, but not D1, was fused to the stable ER resident protein SEC62. This indicates that the instability loop in D2, but not its subcellular localization, is the key determinant of D2 susceptibility to ubiquitination and rapid turnover rate. Our data also show that the 6 N-terminal amino acids, but not the 12 C-terminal ones, are the ones required for D2 recognition by WSB-1.  相似文献   

5.
6.
Apaf-1 is an important apoptotic signaling molecule that can activate procaspase-9 in a cytochrome c/dATP-dependent fashion. Alternative splicing can create an NH(2)-terminal 11-amino acid insert between the caspase recruitment domain and ATPase domains or an additional COOH-terminal WD-40 repeat. Recently, several Apaf-1 isoforms have been identified in tumor cell lines, but their expression in tissues and ability to activate procaspase-9 remain poorly characterized. We performed analysis of normal tissue mRNAs to examine the relative expression of the Apaf-1 forms and identified Apaf-1XL, containing both the NH(2)-terminal and COOH-terminal inserts, as the major RNA form expressed in all tissues tested. We also identified another expressed isoform, Apaf-1LN, containing the NH(2)-terminal insert, but lacking the additional WD-40 repeat. Functional analysis of all identified Apaf-1 isoforms demonstrated that only those with the additional WD-40 repeat activated procaspase 9 in vitro in response to cytochrome c and dATP, while the NH(2)-terminal insert was not required for this activity. Consistent with this result, in vitro binding assays demonstrated that the additional WD-40 repeat was also required for binding of cytochrome c, subsequent Apaf-1 self-association, binding to procaspase-9, and formation of active Apaf-1 oligomers. These experiments demonstrate the expression of multiple Apaf-1 isoforms and show that only those containing the additional WD-40 repeat bind and activate procaspase-9 in response to cytochrome c and dATP.  相似文献   

7.
8.
9.
10.
Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.  相似文献   

11.
12.
Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.  相似文献   

13.
Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, lambda = (D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that lambda is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict lambda-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction alpha (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation lambda = ((3-alpha)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for lambda > 1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.  相似文献   

14.
Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis.  相似文献   

15.
Hinnerwisch J  Fenton WA  Furtak KJ  Farr GW  Horwich AL 《Cell》2005,121(7):1029-1041
The cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding of substrate proteins bearing "tag" sequences, such as the 11-residue ssrA sequence appended to proteins translationally stalled at ribosomes. Unfolding is coupled to translocation through a central channel into the associating protease, ClpP. To explore the topology and mechanism of ClpA action, we carried out chemical crosslinking and functional studies. Whereas a tag from RepA protein crosslinked proximally to the flexible N domains, the ssrA sequence in GFP-ssrA crosslinked distally in the channel to a segment of the distal ATPase domain (D2). Single substitutions placed in this D2 loop, and also in two apparently cooperating proximal (D1) loops, abolished binding of ssrA substrates and unfolded proteins lacking tags and blocked unfolding of GFP-RepA. Additionally, a substitution adjoining the D2 loop allowed binding of ssrA proteins but impaired their translocation. This loop, as in homologous nucleic-acid translocases, may bind substrates proximally and, coupled with ATP hydrolysis, translocate them distally, exerting mechanical force that mediates unfolding.  相似文献   

16.
Ding XQ  Stricker HM  Naash MI 《Biochemistry》2005,44(12):4897-4904
Peripherin/rds (P/rds) is a disk rim protein that assembles into homo and hetero complexes with its nonglycosylated homologue, Rom-1, to maintain the integrity of the photoreceptor outer segment. Mutations in the rds gene have been identified in a variety of human retinal degenerative diseases. More than 70% of these mutations are located in the second intradiscal (D2) loop, highlighting the functional importance of this region. This study examines the involvement of different regions of the D2 loop in protein associations using a GST pull-down assay and a heterologous coexpression system. The pull-down assay suggests an association of the N-terminal portion (Phe(120)-Phe(187)) of the D2 loop with Rom-1 as well as with other P/rds molecules. Through peptide competition experiments, the region between Cys(165) and Asn(182) of the D2 loop has been identified as the domain for these associations. In a COS-1 cell heterologous expression system, coexpression of the D2 loop along with the intact P/rds and Rom-1 hindered the association of the two full-length proteins. In contrast to the homo association of P/rds molecules, it seems that the hetero association of P/rds with Rom-1 has a more stringent structural requirement. This work defines the crucial domain of the D2 loop, which mediates homo and hetero associations, specifically the regions that lay between Cys(165) and Asn(182). Elucidation of the molecular mechanisms behind the protein-protein associations of P/rds and its partners may reveal the pathogenic defects arising from the most common mutations in this gene.  相似文献   

17.
Ubiquitination is a critical posttranslational regulator of protein stability and/or subcellular localization. Here we show that ubiquitination can also regulate proteins by transiently inactivating enzymatic function through conformational change in a dimeric enzyme, which can be reversed upon deubiquitination. Our model system is the thyroid hormone-activating type 2 deiodinase (D2), an endoplasmic reticulum-resident type 1 integral membrane enzyme. D2 exists as a homodimer maintained by interacting surfaces at its transmembrane and globular cytosolic domains. The D2 dimer associates with the Hedgehog-inducible ubiquitin ligase WSB-1, the ubiquitin conjugase UBC-7, and VDU-1, a D2-specific deubiquitinase. Upon binding of T4, its natural substrate, D2 is ubiquitinated, which inactivates the enzyme by interfering with D2's globular interacting surfaces that are critical for dimerization and catalytic activity. This state of transient inactivity and change in dimer conformation persists until deubiquitination. The continuous association of D2 with this regulatory protein complex supports rapid cycles of deiodination, conjugation to ubiquitin, and enzyme reactivation by deubiquitination, allowing tight control of thyroid hormone action.  相似文献   

18.
M Marzioch  R Erdmann  M Veenhuis    W H Kunau 《The EMBO journal》1994,13(20):4908-4918
To identify components of the peroxisomal import pathway in yeast, we have isolated pas mutants affected in peroxisome biogenesis. Two mutants assigned to complementation group 7 define a new gene, PAS7, whose product is necessary for import of thiolase, a PTS2-containing protein, but not for that of SKL (PTS1)-containing proteins, into peroxisomes. We have cloned PAS7 by complementation of the oleic acid non-utilizing phenotype of the pas7-1 strain. The DNA sequence predicts a 42.3 kDa polypeptide of 375 amino acids encoding a novel member of the beta-transducin related (WD-40) protein family. A Myc epitope-tagged Pas7p, expressed under the control of the CUP1 promotor, was functionally active. Subcellular localization studies revealed that in the presence of thiolase this epitope-tagged Pas7p in part associates with peroxisomes. However, in a thiolase-deficient mutant, Pas7p was entirely found in the cytoplasm. We suggest that Pas7p mediates the binding of thiolase to these organelles.  相似文献   

19.
NOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-Jun N-terminal kinase-binding protein 1 (JNKBP1), a scaffold protein characterized by an N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following muramyl dipeptide activation. This interaction attenuates NOD2-mediated NF-κB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signaling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and in immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号