首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The widespread beta-thymosin/WH2 actin binding domain has versatile regulatory properties in actin dynamics and motility. beta-thymosins (isolated WH2 domain) maintain monomeric actin in a "sequestered" nonpolymerizable form. In contrast, when repeated in tandem or inserted in modular proteins, the beta-thymosin/WH2 domain promotes actin assembly at filament barbed ends, like profilin. The structural basis for these opposite functions is addressed using ciboulot, a three beta-thymosin repeat protein. Only the first repeat binds actin and possesses the function of ciboulot. The region that shows the strongest interaction with actin is an amphipathic N-terminal alpha helix, present in all beta-thymosin/WH2 domains, which recognizes the ATP bound actin structure and uses the shear motion of actin linked to ATP hydrolysis to control polymerization. Crystallographic ((1)H, (15)N), NMR, and mutagenetic data reveal that the weaker interaction of the C-terminal region of beta-thymosin/WH2 domain with actin accounts for the switch in function from inhibition to promotion of actin assembly.  相似文献   

2.
The WH2 (Wiscott-Aldridge syndrome protein homology domain 2) repeat is an actin interacting motif found in monomer sequestering and filament assembly proteins. We have stabilized the prototypical WH2 family member, thymosin-beta4 (Tbeta4), with respect to actin, by creating a hybrid between gelsolin domain 1 and the C-terminal half of Tbeta4 (G1-Tbeta4). This hybrid protein sequesters actin monomers, severs actin filaments and acts as a leaky barbed end cap. Here, we present the structure of the G1-Tbeta4:actin complex at 2 A resolution. The structure reveals that Tbeta4 sequesters by capping both ends of the actin monomer, and that exchange of actin between Tbeta4 and profilin is mediated by a minor overlap in binding sites. The structure implies that multiple WH2 motif-containing proteins will associate longitudinally with actin filaments. Finally, we discuss the role of the WH2 motif in arp2/3 activation.  相似文献   

3.
The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.  相似文献   

4.
Purified actin and microtubule proteins polymerized together form a gel, while mixtures of actin with tubulin polymers lacking microtubule-associated proteins (MAPs) have low viscosities close to the sum of the viscosities of the constituents. Mixtures of actin and MAPs also have high viscosities. Our interpretation of these observations was that there is interaction of actin filaments and microtubules which is mediated by MAPs (Griffith, L. M., and Pollard, T. D. (1978) J. Cell Biol. 78, 958-965). We report here further evidence for this interaction. 1) Actin filaments and microtubules can form gels at physiological ionic strength providing the anion is glutamate rather than chloride. Both glutamate and chloride inhibit actin-MAPs interaction, but this is compensated for in glutamate where the microtubules are longer than in chloride. 2) The low shear viscosity of mixtures of isolated MAPs and actin filaments is enhanced by acidic pH and inhibited by high ionic strength. 3) MAPs can be fractionated to yield four different fractions with actin cross-linking activity: a subset of high molecular weight MAPs, purified "MAP-2" and two different fractions of tau polypeptides. 4) We have reconstituted a gel from actin, purified tubulin, and whole MAPs, but have not yet been successful with actin, purified tubulin, and any single purified MAP.  相似文献   

5.
Actobindin is an actin-binding protein from amoeba, which consists of two beta-thymosin repeats and has been shown to inhibit actin polymerization by sequestering G-actin and by stabilizing actin dimers. Here we show that actobindin has the same biochemical properties as the Drosophila or Caenorhabditis elegans homologous protein that consists of three beta-thymosin repeats. These proteins define a new family of actin-binding proteins. They bind G-actin in a 1:1 complex with thermodynamic and kinetic parameters similar to beta-thymosins. Like beta-thymosins, they slow down nucleotide exchange on G-actin and make a ternary complex with G-actin and Latrunculin A. On the other hand, they behave as functional homologs of profilin because their complex with MgATP-G-actin, unlike beta-thymosin-actin, participates in filament barbed end growth, like profilin-actin complex. Therefore these proteins play an active role in actin-based motility processes. In addition, proteins of the actobindin family interact with the pointed end of actin filaments and inhibit pointed end growth, maybe via the interaction of the beta-thymosin repeats with two terminal subunits.  相似文献   

6.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

7.
Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt’s PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a β-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt—the next node in the Ras/PI3K pathway—at the plasma membrane.  相似文献   

8.
9.
Allosteric regulation of protein function occurs when the regulatory trigger, such as the binding of a small-molecule effector or inhibitor, takes place some distance from the protein’s, or protein complex’s, active site. This distance can be a few Å, or tens of Å. Many proteins are regulated in this way and exhibit a variety of allosteric mechanisms. Here we review how analyses of experimentally determined models of protein 3D structures, using either X-ray crystallography or NMR spectroscopy, have revealed some of the mechanisms involved.  相似文献   

10.
DivIVA proteins and their GpsB homologues are late cell division proteins found in Gram‐positive bacteria. DivIVA/GpsB proteins associate with the inner leaflet of the cytosolic membrane and act as scaffolds for other proteins required for cell growth and division. DivIVA/GpsB proteins comprise an N‐terminal lipid‐binding domain for membrane association fused to C‐terminal domains supporting oligomerization. Despite sharing the same domain organization, DivIVA and GpsB serve different cellular functions: DivIVA plays diverse roles in division site selection, chromosome segregation and controlling peptidoglycan homeostasis, whereas GpsB contributes to the spatiotemporal control of penicillin‐binding protein activity. The crystal structures of the lipid‐binding domains of DivIVA from Bacillus subtilis and GpsB from several species share a fold unique to this group of proteins, whereas the C‐terminal domains of DivIVA and GpsB are radically different. A number of pivotal features identified from the crystal structures explain the functional differences between the proteins. Herein we discuss these structural and functional relationships and recent advances in our understanding of how DivIVA/GpsB proteins bind and recruit their interaction partners, knowledge that might be useful for future structure‐based DivIVA/GpsB inhibitor design.  相似文献   

11.
P D Chantler  W B Gratzer 《Biochemistry》1976,15(10):2219-2225
The simplest interacting unit of actomyosin, viz., single myosin heads (subfragment 1) with actin monomers, has been studied at physiological ionic strength, by isolating the actin molecules from each other on a solid support. The interaction is characterized by a binding constant of 10(5) to 10(6) M-1 in the temperature range 4-30degrees C. It is endothermic with a standard enthalpy of 24 +/- 10 kcal mol-1, and a standard entropy of 110 +/- 40 eu. It is thus, like many protein-protein association processes, entropy-driven. Despite the high affinity of the association, which is comparable in its binding constant to that of subfragment 1 with F-actin, there is only very small activation of myosin ATPase. The ionic-strength dependence of the interaction shows unusual features. Binding of the proteins of the relaxing system to the monomeric actin was also examined: troponin binds both in the presence and absence of calcium ions, but neither tropomyosin nor the tropomyosin-troponin complex was found to bind significantly. Monomeric actin has also been examined as a function of ionic strength by spectroscopic methods; it appears that conformational differences between the G and the F state are the consequence of polymerization, and not of the change in ionic strength required to being the conversion about.  相似文献   

12.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

13.
The interaction of actin with dystrophin   总被引:7,自引:0,他引:7  
Proton NMR spectroscopy of synthetic peptides corresponding to defined regions of human dystrophin has been employed to study the interaction with F-actin. No evidence of interaction with a C-terminal region corresponding to amino acid residues 3429-3440 was obtained. F-actin restricted the mobility of residues 19-27 in a synthetic peptide corresponding to residues 10-32. This suggests that this is a site of F-actin interaction in the intact dystrophin molecule. Identical sequences to that of residues 19-22 in dystrophin, namely Lys-Thr-Phe-Thr are also present in the N-terminal regions of the alpha-actinins implying this is also a site of F-actin interaction with alpha-actinin.  相似文献   

14.
We have previously shown that microtubule-associated protein 2 (MAP2) and Tau, two major microtubule-associated proteins, interact with actin differently as measured by low-shear viscosity and that their activities are modified by phosphorylation (Nishida, E., Kotani, S., Kuwaki, T., and Sakai, H. (1982 in Biological Functions of Microtubules and Related Structures (Sakai, H., Mohri, H., and Borisy, G. G., eds) pp. 297-309, Academic Press, Japan). In the present study we further examined their interaction using turbidimetry, electron microscopy, low- and high-shear viscometry. MAP2 increased the low-shear viscosity of actin filament but had weaker effect on high-shear viscosity and turbidity of actin filaments. In contrast, Tau reduced high-shear viscosity of actin filaments and enhanced the turbidity which were due to formation of actin filament bundles as shown by electron microscopy. We conclude that MAP2 is a gelation factor, while Tau is a bundling factor. A well-known Ca2+-dependent regulatory protein, calmodulin, inhibited both MAP2-actin and Tau-actin interaction in a Ca2+-dependent manner. The calmodulin-dependent inhibition was canceled by higher concentrations of MAP2 or Tau, and calmodulin had no effect on the viscosity of actin filament alone, indicating that this inhibition is based on the stoichiometric interaction of calmodulin with MAP2 or Tau.  相似文献   

15.
Cordon-Bleu is, like Spire, a member of the growing family of WH2 repeat proteins, which emerge as versatile regulators of actin dynamics. They are expressed in morphogenetic and patterning processes and nucleate actin assembly in vitro. Here, we show that Cordon-Bleu works as a dynamizer of actin assembly by combining many properties of profilin with weak filament nucleating and powerful filament severing activities and sequestration of ADP-actin, which altogether generate oscillatory polymerization kinetics. A short lysine-rich sequence, N-terminally adjacent to the three WH2 domains, is required for nucleation and severing. In this context, nucleation requires only one WH2 domain, but filament severing requires two adjacent WH2 domains. A model integrating the multiple activities of Cordon-Bleu and quantitatively fitting the multiphasic polymerization curves is derived. Hence, with similar structural organization of WH2 repeats, Cordon-Bleu and Spire display different functions by selecting different sets of the multifunctional properties of WH2 domains.  相似文献   

16.
Proteins that can interact with multiple partners play central roles in the network of protein-protein interactions. They are called hub proteins, and recently it was suggested that an abundance of intrinsically disordered regions on their surfaces facilitates their binding to multiple partners. However, in those studies, the hub proteins were identified as proteins with multiple partners, regardless of whether the interactions were transient or permanent. As a result, a certain number of hub proteins are subunits of stable multi-subunit proteins, such as supramolecules. It is well known that stable complexes and transient complexes have different structural features, and thus the statistics based on the current definition of hub proteins will hide the true nature of hub proteins. Therefore, in this paper, we first describe a new approach to identify proteins with multiple partners dynamically, using the Protein Data Bank, and then we performed statistical analyses of the structural features of these proteins. We refer to the proteins as transient hub proteins or sociable proteins, to clarify the difference with hub proteins. As a result, we found that the main difference between sociable and nonsociable proteins is not the abundance of disordered regions, in contrast to the previous studies, but rather the structural flexibility of the entire protein. We also found greater predominance of charged and polar residues in sociable proteins than previously reported.  相似文献   

17.
(PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification of their mechanism of action at a molecular level was available. We have obtained an X-ray crystal structure of PTX-2 bound to actin, which, in combination with analyses of the effect of PTX-2 on purified actin filament dynamics, provides a molecular explanation for its effects on actin. PTX-2 formed a 1:1 complex with actin and engaged a novel site between subdomains 1 and 3. Based on models of the actin filament, PTX binding would disrupt key lateral contacts between the PTX-bound actin monomer and the lower lateral actin monomer within the filament, thereby capping the barbed-end. The location of this binding position within the interior of the filament indicates that it may not be accessible once polymerization has occurred, a hypothesis supported by our observation that PTX-2 caused filament capping without inducing filament severing. This mode of action is unique, as other actin filament destabilizing toxins appear to exclusively disrupt longitudinal monomer contacts, allowing many of them to sever filaments in addition to capping them. Examination of the PTX-binding site on actin provides a rationalization for the structure-activity relationships observed in vivo and in vitro, and may provide a basis for predicting toxicity of PTX analogues.  相似文献   

18.
19.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   

20.
Vasodilator-stimulated phosphoprotein (VASP) is a key regulator of dynamic actin structures like filopodia and lamellipodia, but its precise function in their formation is controversial. Using in vitro TIRF microscopy, we show for the first time that both human and Dictyostelium VASP are directly involved in accelerating filament elongation by delivering monomeric actin to the growing barbed end. In solution, DdVASP markedly accelerated actin filament elongation in a concentration-dependent manner but was inhibited by low concentrations of capping protein (CP). In striking contrast, VASP clustered on functionalized beads switched to processive filament elongation that became insensitive even to very high concentrations of CP. Supplemented with the in vivo analysis of VASP mutants and an EM structure of the protein, we propose a mechanism by which membrane-associated VASP oligomers use their WH2 domains to effect both the tethering of actin filaments and their processive elongation in sites of active actin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号