首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The maximal oxygen uptake (VO2 max) of 228 men and 47 women from the Indian agricultural community was measured. The VO2 max in 20-24-year-old men was about 17% less than in the 25-29-year-old group. With advancing age, the VO2 declined gradually to the ages 55-59, excepting the 36-39-year-old group. The loss in VO2 max was 0.65 ml/kg.min per year between 25 and 39 years of age and 0.16 ml/kg.min per year between 40 and 59 years of age. However, 30-39-year-old women had 7% higher VO2 max than the 20-29-year-old age group; and the difference in VO2 max between the group 30-39 and the group 40-49 years of age was 32%. The 20-29-and 40-49-year-old women had VO2 max 24 and 30% less than those of men in the same age range.  相似文献   

4.
5.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760 nm and 850 nm during incremental exercise and 6 min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (V˙O2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P < 0.01) between %Mox and absolute V˙O2 during arm cranking and leg cycling in men (multiple R = −0.96 and −0.99, respectively) and women (R =−0.94 and −0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of V˙O2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in V˙O2 between 30% and 90% of the peak V˙O2 was independent of exercise mode and gender. Accepted: 31 March 1998  相似文献   

6.
1. During the control, tympanic temperature (Tty), skin blood flow (SkBF), local sweating rate (LSR) and heart rate (HR) of the AC were markedly higher than those of the BE. No significant differences were finally observed in rectal (Tre) and mean skin (Tsk) temperatures or oxygen uptake (VO2). In contrast, mechanical work efficiency (ME) was significantly higher in the BE than in the AC.

2. During ice cooling, Tty and the increasing rate in Tty began to be suppressed at 25–35 min after the beginning in both kinds of work. During the AC, SkBF, LSR, HR and mean Tsk in the ice cooling tended to be lower compared those in the control. There were no significant difference between the control and the ice cooling in ME, VO2 or Tre in either kind of work.  相似文献   


7.
8.
In the present study, after a total of 51 observations of a 30-min cycle exercise performed by 17 men ranging in age from 60 to 65 years, the following formula was finally obtained for evaluating total O2 uptake (TVO2) during exercise: TVO2 (ml.kg-1) = SR125 X (49.5 X mean HR + 3760) X THB X 10(-4), where mean HR and THB are mean heart rate (beats.min-1) and total heart beats in exercise, respectively, and SR125 is the slope of the regression line of accumulative O2 uptake on accumulative heart beats during exercise at a mean HR of 125 beats.min-1. SR125 was significantly correlated not only to predicted VO2max but also score (X) in the step test for 2 min (25 steps.min-1 on 35-cm stool), yielding a formula, SR125 = -0.00131X + 0.3660. Consequently, both formulae indicate that total O2 uptake of any exercising elderly man can be estimated from total heart beats and mean HR during exercise, regardless of intensity of exercise when SR125 was determined by the step test. The discrepancy between total O2 uptake evaluated by the estimation method for elderly men and that determined by the Douglas bag method was 10.2 +/- 7.3%.  相似文献   

9.
Twelve spinal cord-injured males performed arm-crank exercise (ACE) with and without concurrent functional neuromuscular stimulation (FNS) of paralyzed leg muscles to investigate the hypothesis that FNS would augment cardiovascular performance during submaximal ACE. Six men who exhibited vigorous isometric contractions of thigh and calf muscles were classed as "responders" to FNS (R), and the remaining subjects with poor or nonexistent contractions served as "nonresponder controls" (C). Steady-state heart rate and oxygen uptake during ACE at 30, 60, and 90 W were not appreciably different from the ACE + FNS condition. However, cardiac outputs in R were augmented by 30% during FNS at rest (from 4.9 to 6.4 l/min), by 18% during 30-W ACE + FNS (from 8.6 to 10.1 l/min), and by 28% during 90-W ACE + FNS (from 12.1 to 15.6 l/min). Similarly, resting stroke volumes were increased by 18% (9 ml) and by 23% (19 ml) at 60 W during FNS in the R group. Calculated total peripheral resistance was reduced at rest and during 90-W ACE + FNS by approximately 24%. In contrast, no alterations of circulatory hemodynamics were observed for C subjects. These data indicate that FNS-induced contractions of paralyzed leg muscles augment venous return to aid central cardiovascular control during upper-body submaximal exercise in paraplegics.  相似文献   

10.
A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (Vo(2)) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and Vo(2) also during exercise. We reanalyzed our previous data from a study in which BF and Vo(2) was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015-E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and Vo(2) during exercise in both groups (r(2) = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient (r(2)) was significantly higher in the trained men (0.71 +/- 0.07 vs. 0.40 +/- 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to Vo(2) in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men.  相似文献   

11.
12.
13.
The purposes of this study were firstly to determine the relationship between the peak power output (Wpeak) and maximal oxygen uptake (VO2max) attained during a laboratory cycling test to exhaustion, and secondly to assess the relationship between Wpeak and times in a 20-km cycling trial. One hundred trained cyclists (54 men, 46 women) participated in the first part of this investigation. Each cyclist performed a minimum of one maximal test during which Wmax and VO2max were determined. For the second part of the study 19 cyclists completed a maximal test for the determination of Wpeak, and also a 20-km cycling time trial. Highly significant relationships were obtained between Wpeak and VO2max (r = 0.97, P less than 0.0001) and between Wpeak and 20-km cycle time (r = -0.91, P less than 0.001). Thus, Wpeak explained 94% of the variance in measured VO2max and 82% of the variability in cycle time over 20 km. We concluded that for trained cyclists, the VO2max can be accurately predicted from Wpeak, and that Wpeak is a valid predictor of 20-km cycle time.  相似文献   

14.
Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Than), percentage utilization of aerobic power (% VO2max), and Than during running were investigated. There were six men and six women aged 20–30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Than, and CR were measured during controlled running on a treadmill at 1° and 3° gradient. From each subject's recorded time of running in the marathon, the average speed (v M) was calculated and maintained during the treadmill running for 11 min. The VO2 max was inversely related to body mass (m b), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml·kg–0.75·min–1 is convenient when comparing individuals with different m b. The VO2max was about 10% (23 ml·kg–0.75·min–1) higher in the men than in the women. The women had on the average 10–12 ml·kg–0.75·min–1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml·kg–1·m–1 (resting included), and was independent of treadmill speed. No sex differences in Than expressed as % VO2max or percentage maximal heart rate were found, but Than expressed as VO2 in ml·kg–0.75·min–1 was significantly higher in the men compared to the women. The percentage utilization of f emax and concentration of blood lactate at v M was higher for the female runners. The women ran 2 days more each week than the men over the first 4 months during the half year preceding the marathon race. It was concluded that the higher VO2max and Than in the men was compensated for by more running, superior CR, and a higher exercise intensity during the race in the performance-matched female marathon runners.  相似文献   

15.
Fetal oxygen uptake during uterine contractures   总被引:1,自引:0,他引:1  
During contractures there are decreases in fetal oxygen tension. In order to determine if there are concomitant changes in fetal oxygen consumption, we calculated the latter during contractures from measurements of the umbilical blood flow and venous arterial oxygen content differences across the umbilical circulation. There were decreases in both the umbilical venous (from 8.8 +/- 0.2 (SEM) to 8.5 +/- 0.2 ml.dl-1, P less than 0.01) and umbilical arterial (5.9 +/- 0.1 to 5.2 +/- 0.2 mg.dl-1, P less than 0.001) oxygen contents. The umbilical venous-arterial oxygen content difference increased from 2.9 +/- 0.1 to 3.3 +/- 0.2 ml.dl-1 (P less than 0.005). Umbilical blood flow was 194.3 +/- 4.5 ml.min-1 kg-1 during relaxation and was unchanged during contractures. Fetal oxygen uptake increased from 5.7 +/- 0.3 to 6.5 +/- 0.4 ml.min-1 kg-1 (P less than 0.005) during contractures. This observation is consistent with our previous speculation that there is increased muscular activity of tone associated with contractures.  相似文献   

16.
The present study tested the hypothesis that the magnitude of the type 2 diabetes-induced impairments in peak oxygen uptake (Vo(2)) and Vo(2) kinetics would be greater in females than males in middle-aged participants. Thirty-two individuals with type 2 diabetes (16 male, 16 female), and 32 age- and body mass index (BMI)-matched healthy individuals (16 male, 16 female) were recruited. Initially, the ventilatory threshold (VT) and peak Vo(2) were determined. On a separate day, subjects completed four 6-min bouts of constant-load cycling at 80% VT for the determination of Vo(2) kinetics using standard procedures. Cardiac output (CO) (inert gas rebreathing) was recorded at rest, 30, and 240 s during two additional bouts. Peak Vo(2) (ml·kg(-1)·min(-1)) was significantly reduced in men and women with type 2 diabetes compared with their respective nondiabetic counterparts (men, 27.8 ± 4.4 vs. 31.1 ± 6.2 ml·kg(-1)·min(-1); women, 19.4 ± 4.1 vs. 21.4 ± 2.9 ml·kg(-1)·min(-1)). The time constant (s) of phase 2 (τ(2)) and mean response time (s) of the Vo(2) response (MRT) were slowed in women with type 2 diabetes compared with healthy women (τ(2), 43.3 ± 9.8 vs. 33.6 ± 10.0 s; MRT, 51.7 ± 9.4 vs. 43.5 ± 11.4s) and in men with type 2 diabetes compared with nondiabetic men (τ(2), 43.8 ± 12.0 vs. 35.3 ± 9.5 s; MRT, 57.6 ± 8.3 vs. 47.3 ± 9.3 s). The magnitude of these impairments was not different between males and females. The steady-state CO responses or the dynamic responses of CO were not affected by type 2 diabetes among men or women. The results suggest that the type 2 diabetes-induced impairments in peak Vo(2) and Vo(2) kinetics are not affected by sex in middle aged participants.  相似文献   

17.
The reliability and validity of a continuous progressive arm test, in which maximal 02 consumption (V02 max arm) is determined, were analyzed. Forty-one men (28.2 +/- 8.8 yr) performed the test twice. Eighteen additional men (22.6 +/- 5.6 yr) performed the arm test, as well as the treadmill run, in which maximal O2 consumption VO2max leg) was determined. The validity of the VO2 max arm test was computed, using VO2 max leg as a criterion for the individual's aerobic capacity. The reliability coefficients of VO2 max arm, VEmax arm, and HRmax arm were 0.94, 0.98, and 0.76, respectively, indicating a high reliability of the testmthe validity coefficient of VO2max arm was only 0.74. The regression equation of VO2max leg on VO2max arm was y = 24.4 + 0.9 +/- 4.4 (Syx). These findings indicate that, following the suggested protocol, the individual repeatedly uses the same muscles and does reach an all-out stage. However, different individuals apparently are aided by their trunk and leg muscles to different degrees, which lowers the validity of this test as a predictor of aerobic capacity.  相似文献   

18.
The purpose of this study was to determine the effect of work rate increment on peak oxygen uptake (VO2 peak) during wheelchair ergometry (WCE) in men with quadriplegia due to cervical spinal cord injuries (CSCI). Twenty-two non-ambulatory subjects (aged 20-38 years) with CSCI were divided into two groups based on wheelchair sports classification (n = 12 for IA group and n = 10 for IB/IC group). Subjects underwent three different, continuous graded exercise tests (spaced at least 1 week apart) on an electronically braked wheelchair ergometer. Following a 3-min warmup, the work rate was increased 2, 4, or 6 W.min-1 for the IA group and 4, 6, or 8 W.min-1 for the IB/IC group. Ventilation and gas exchange were measured breath-by-breath with a computerized system. Repeated-measures ANOVA showed no significant difference among the three protocols for VO2 peak in the IA group (P greater than 0.05). The mean (SD) VO2 peak values (ml.kg-1.min-1) were 9.3 (2.4), 9.4 (3.2), and 8.4 (2.6) for the 2, 4, and 6 W.min-1 protocols, respectively. In contrast, the IB/IC group showed a significant difference among the protocols for VO2 peak (P less than 0.05). The mean (SD) VO2 peak values (ml.kg-1,min-1) were 15.1 (4.0), 14.1 (4.4), and 12.7 (4.0) for the 4, 6, and 8 W.min-1 protocols, respectively. Post hoc analysis revealed a difference between the 4 and 8 W.min-1 protocols. Our results suggest that graded exercise testing of men with quadriplegia due to CSCI, using WCE, should employ work rate increments between 2 and 6 W.min-1 and that work rate increments of 8 W.min-1 or greater will result in an underestimate of VO2 peak.  相似文献   

19.
20.
Changes in intracellular Po2 in myoglobin containing skeletal muscle during exercise were estimated in normal nonathlete subjects from measurements of shifts of CO between blood and muscle under conditions where the total body CO stores remained constant. Exercise was performed on a bicycle ergometer. In 1.5-2 and 6-7 min runs at Vo2 max with the subject breathing 21% O2, mean MbCO/HbCO increased 146 +/- 7 and 163 +/- 11% of resting values, respectively (P less than 0.05). With the subjects breathing 13-14% O2, in 1.5-2 and 6-7 min runs, Vo2 max fell an average of 4.3 +/- 5.1% and 12.0 +/- 5.2%, respectively, and mean MbCO/HbCO increased to 233 +/- 18% and 210 +/- 52% of resting value, respectively (P less than 0.05). These findings suggest that mean myoglobin Po2 fell during exercise at Vo2 max, with the subjects breathing 21% O2 and the decrease in mean myoglobin Po2 was greater with the subject breathing 13-14% O2. There was considerable variability in different subjects and in some, the data were not consistent with intracellular O2 availability limiting aerobic metabolism. The data support a postulate that there are several limiting factors for the aerobic capacity, including intracellular O2 availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号