首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation resulting in substitution of positively charged Lys53 with negatively charged Glu in the coat protein was introduced in the infectious cDNA copy of the genome of wild-type tobacco mosaic virus strain U1. Kinetic analysis of long-distance virus transport in plants showed that systemic spread of the mutant virus was delayed by 5–6 days as compared with the wild-type one. On evidence of RNA sequencing in the mutant progeny, Glu50 of the coat protein was substituted with Lys after passage I to compensate for the loss of the positive charge at position 53. Electron microscopy revealed atypical inclusions (rodlike structures, multiple electron-dense globular particles) in the nuclear interchromatin space of leaf mesophyll cells infected with the mutant but not with the wild-type virus.  相似文献   

2.
M A Arbing  J W Hanrahan  J W Coulton 《Biochemistry》2001,40(48):14621-14628
Porin (341 amino acids; M(r) 37 782) of Haemophilus influenzae type b mediates exchange of solutes between the external environment and the periplasm of this Gram-negative bacterium. Positively charged residues in the extracellular loops have been shown to be involved in the voltage gating of this protein. To further elucidate our observations on the functional properties of this channel, we mutated seven lysines (Lys(48), Lys(161), Lys(165), Lys(170), Lys(248), Lys(250), and Lys(253)) to glutamic acid. The selected residues were previously shown to be accessible to chemical modification, and they map to three locations: loop 4 and loop 6, and within the barrel lumen. The seven mutant proteins were purified, and each was reconstituted into planar lipid bilayers to characterize its channel forming properties. The single substitution mutant porins displayed increased single channel conductances in 1 M KCl ranging between 134 and 178% of the single channel conductance for wild-type Hib porin. Six of the seven mutant porins also displayed altered current-voltage relationships when compared to wild-type Hib porin. Whereas Lys(170)Glu had activity similar to wild-type Hib porin, Lys(48)Glu, Lys(248)Glu, and Lys(253)Glu showed substantial voltage gating at both positive and negative polarities. Lys(161)Glu and Lys(250)Glu gated only at negative potentials, and Lys(165)Glu gated only at positive potentials. Rather than ascribing one specific loop in gating, our analyses of these mutant Hib porins suggest that voltage gating can be attributed to contributions from loops 4 and 6 and a residue within the barrel lumen.  相似文献   

3.
In structure-function studies on bovine rhodopsin by in vitro site-specific mutagenesis, we have prepared three mutants in the cytoplasmic loop between the putative transmembrane helices E and F. In each mutant, charged amino acid residues were replaced by neutral residues: mutant 1, Glu239----Gln; mutant 2, Lys248----Leu; and mutant 3, Glu247----Gln, Lys248----Leu, and Glu249----Gln. The mutant rhodopsin genes were expressed in monkey kidney (COS-1) cells. After the addition of 11-cis-retinal to the cells, the rhodopsin mutants were purified by immunoaffinity adsorption. Each mutant gave a wild-type rhodopsin visible absorption spectrum. The mutants were assayed for their ability to stimulate the GTPase activity of transducin in a light-dependent manner. While mutants 1 and 3 showed wild-type activity, mutant 2 (Lys248----Leu) was inactive.  相似文献   

4.
Cu,Zn superoxide dismutases are characterized by the presence of four highly conserved charged residues (Lys120, Glu/Asp130, Glu131 and Lys134), which are placed at the edge of the active site channel and have been shown to be individually involved in the electrostatic attraction of the substrate toward the catalytically active copper ion. By genetic engineering we mutated these four residues into neutrally charged ones (Leu120, Gln130, Gln131, Thr134). The effects of these mutations on the rate of superoxide dismutation were not dramatic. In fact, at two different pH and ionic strength values, the mutant enzyme had a catalytic constant even higher with respect to the wild-type protein, showing that electrostatic interaction at these surface sites is not essential for high catalytic efficiency of the enzyme. The mutant and the wild-type enzyme showed the same degree of inhibition by CN(-), and both were not affected by I(-), showing that mutations did not alter the sensitivity of the enzyme to anions. On the other hand, reconstitution of active enzyme from either the wild-type or mutant copper-free enzymes with a copper(I)-glutathione [Cu(I)-GSH] complex showed that metal uptake by the mutant was much slower than by the wild-type enzyme. The demonstration that the 'electrostatic loop' is apparently conserved to assure optimal copper uptake by the enzyme, rather than fast dismutation, may provide further support to the idea that Cu,Zn superoxide dismutase is a bifunctional protein, acting in cellular defense against oxidative stress both as a copper buffer and as a superoxide radical scavenger.  相似文献   

5.
To elucidate the role of individual amino acid residues in stabilizing the conformation of a protein, the stabilities of wild-type tryptophan synthase alpha-subunit from Escherichia coli and seven mutant proteins substituted by single amino acid residues at position 49, which is buried in the interior of the protein, were compared. The mutant proteins have Gln, Met, Val, Tyr, Leu, Ser, or Lys in place of Glu in the wild-type protein. The dissociation constant, pK, of the Glu residue at position 49 for the wild-type protein was determined to be 7.5 from a titration curve obtained by comparison of two-dimensional isoelectric focusing electrophoresis of the wild-type and mutant proteins. Our results indicate that 1) the conformational stabilities of the proteins studied increase linearly with hydrophobicity of the substituting residues (except Tyr), with the coefficient of this linear dependence being 2.0, 3.4, or 1.3 at pH 5.5, 7.0, or 9.0, respectively; and 2) Lys or Glu at position 49 serve as a destabilizing factor when ionized.  相似文献   

6.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

7.
We have genetically engineered the Arg200----Lys mutant, the Glu144Arg145----GlnLys double mutant, and the Glu144Arg145Arg200----GlnLysLys triple mutant of the EcoRI endonuclease in extension of previously published work on site-directed mutagenesis of the EcoRI endonuclease in which Glu144 had been exchanged for Gln and Arg145 for Lys [Wolfes et al. (1986) Nucleic Acids Res. 14, 9063]. All these mutants carry modifications in the DNA binding site. Mutant EcoRI proteins were purified to homogeneity and characterized by physicochemical techniques. All mutants have a very similar secondary structure composition. However, whereas the Lys200 mutant is not impaired in its capacity to form a dimer, the Gln144Lys145 and Gln144Lys145Lys200 mutants have a very much decreased propensity to form a dimer or tetramer depending on concentration as shown by gel filtration and analytical ultracentrifugation. This finding may explain the results of isoelectric focusing experiments which show that these two mutants have a considerably more basic pI than expected for a protein in which an acidic amino acid was replaced by a neutral one. Furthermore, while wild-type EcoRI and the Lys200 mutant are denatured in an irreversible manner upon heating to 60 degrees C, the thermal denaturation process as shown by circular dichroism spectroscopy is fully reversible with the Gln144Lys145 double mutant and the Gln144Lys145Lys200 triple mutant. All EcoRI endonuclease mutants described here have a residual enzymatic activity with wild-type specificity, since Escherichia coli cells overexpressing the mutant proteins can only survive in the presence of EcoRI methylase. The detailed analysis of the enzymatic activity and specificity of the purified mutant proteins is the subject of the accompanying paper [Alves et al. (1989) Biochemistry (following paper in this issue)].  相似文献   

8.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

9.
A study was made of the coat protein (CP) of thermosensitive semidefective tobacco mosaic virus strain K1 (TMV-K1). In contrast to CP of other TMV strains, K1 CP showed high nonspecific aggregation and did not form normal two-layered cylindrical aggregates. In none of the conditions tested, K1 CP formed virions with cognate K1 RNAin vitro. The abnormal properties were attributed to substitution Lys53→Glu differentiating the K1 CP from those of other tobamoviruses. It is assumed that the high structural plasticity allows the tobamovirus virions to incorporate CP subunits even with unfavorable amino acid changes.  相似文献   

10.
Serum transferrin is the major iron transport protein in humans. Its function depends on its ability to bind iron with very high affinity, yet to release this bound iron at the lower intracellular pH. Possible explanations for the release of iron from transferrin at low pH include protonation of a histidine ligand and the existence of a pH-sensitive "trigger" involving a hydrogen-bonded pair of lysines in the N-lobe of transferrin. We have determined the crystal structure of the His249Glu mutant of the N-lobe half-molecule of human transferrin and compared its iron-binding properties with those of the wild-type protein and other mutants. The crystal structure, determined at 2.4 A resolution (R-factor 19.8%, R(free) 29.4%), shows that Glu 249 is directly bound to iron, in place of the His ligand, and that a local movement of Lys 296 has broken the dilysine interaction. Despite the loss of this potentially pH-sensitive interaction, the H249E mutant is only slightly more acid-stable than wild-type and releases iron slightly faster. We conclude that the loss of the dilysine interaction does make the protein more acid stable but that this is counterbalanced by the replacement of a neutral ligand (His) by a negatively charged one (Glu), thus disrupting the electroneutrality of the binding site.  相似文献   

11.
Bacteriophage T4 lysozyme is a basic molecule with an isoelectric point above 9.0, and an excess of nine positive charges at neutral pH. It might be expected that it would be energetically costly to bring these out-of-balance charges from the extended, unfolded, form of the protein into the compact folded state. To determine the contribution of such long-range electrostatic interactions to the stability of the protein, five positively charged surface residues, Lys16, Arg119, Lys135, Lys147 and Arg154, were individually replaced with glutamic acid. Eight selected double, triple and quadruple mutants were also constructed so as to sequentially reduce the out-of-balance formal charge on the molecule from +9 to +1 units. Each of the five single variant proteins was crystallized and high-resolution X-ray analysis confirmed that each mutant structure was, in general, very similar to the wild-type. In the case of R154E, however, the Arg154 to Glu replacement caused a rearrangement in which Asp127 replaced Glu128 as the capping residue of a nearby alpha-helix. The thermal stabilities of all 13 variant proteins were found to be fairly similar, ranging from 0.5 kcal/mol more stable than wild-type to 1.7 kcal/mol less stable than wild-type. In the case of the five single charge-change variants, for which the structures were determined, the changes in stability can be rationalized in terms of changes in local interactions at the site of the replacement. There is no evidence that the reduction in the out-of-balance charge on the molecule increases the stability of the folded relative to the unfolded form, either at pH 2.8 or at pH 5.3. This indicates that long-range electrostatic interactions between the substituted amino acid residues and other charged groups on the surface of the molecule are weak or non-existent. Furthermore, the relative stabilities of the multiple charge replacement mutant proteins were found to be almost exactly equal to the sums of the relative stabilities of the constituent single mutant proteins. This also clearly indicates that the electrostatic interactions between the replaced charges are negligibly small. The activities of the charge-change mutant lysozymes, as measured by the rate of hydrolysis of cell wall suspensions, are essentially equal to that of the wild-type lysozyme, but on a lysoplate assay the mutant enzymes appear to have higher activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The CutA1 protein from Pyrococcus horikoshii (PhCutA1), a hyperthermophile, has an unusually high content of charged residues and an unusually high denaturation temperature. To elucidate the role of ion-ion interactions in protein stability, mutant proteins of PhCutA1 in which charged residues were substituted by noncharged residues were comprehensively examined. The denaturation temperatures (T(d)) for 13 of 53 examined mutant proteins were higher than that of the wild-type (148.5 °C at pH 7.0), among which E99Q had the highest T(d) at 154.9 °C. R25A had the largest decrease in T(d) among single mutants at ΔT(d) = -12.4 °C. The average decrease in T(d) of Lys or Arg mutants was greater than that of Glu or Asp mutants, and the average change in T(d) (ΔT(d)) of 21 Glu mutants was negligible, at 0.03 ± 2.05 °C. However, the electrostatic energy (-159.3 kJ·mol(-1)) of PhCutA1 was quite high, compared with that of CutA1 from Escherichia coli (-9.7 kJ·mol(-1)), a mesophile. These results indicate that: (a) many Glu and Asp residues of PhCutA1 should be essential for highly efficient interactions with positively charged residues and for generating high electrostatic energy, although they were forced to be partially repulsive to each other; (b) the changes in stability of mutant proteins with a T(d) value of ~140-150 °C were able to be explained by considering factors important for protein stability and the structural features of mutant sites; and (c) these findings are useful for the design of proteins that are stable at temperatures > 100 °C.  相似文献   

13.
Zhu X  Galili G 《The Plant cell》2003,15(4):845-853
To elucidate the relative significance of Lys synthesis and catabolism in determining Lys level in plant seeds, we expressed a bacterial feedback-insensitive dihydrodipicolinate synthase (DHPS) in a seed-specific manner in wild-type Arabidopsis as well as in an Arabidopsis knockout mutant in the Lys catabolism pathway. Transgenic plants expressing the bacterial DHPS, or the knockout mutant, contained approximately 12-fold or approximately 5-fold higher levels, respectively, of seed free Lys than wild-type plants. However, the combination of these two traits caused a synergistic approximately 80-fold increase in seed free Lys level. The dramatic increase in free Lys in the knockout mutant expressing the bacterial DHPS was associated with a significant reduction in the levels of Glu and Asp but also with an unexpected increase in the levels of Gln and Asn. This finding suggested a special regulatory interaction between Lys metabolism and amide amino acid metabolism in seeds. Notably, the level of free Met, which competes with Lys for Asp and Glu as precursors, was increased unexpectedly by up to approximately 38-fold in the various transgenic and knockout plants. Together, our results show that Lys catabolism plays a major regulatory role in Lys accumulation in Arabidopsis seeds and reveal novel regulatory networks of seed amino acid metabolism.  相似文献   

14.
Kono M 《FEBS letters》2006,580(1):229-232
Vertebrate visual pigment proteins contain a conserved carboxylic acid residue in the third transmembrane helix. In rhodopsin, Glu113 serves as a counterion to the positively charged protonated Schiff base formed by 11-cis retinal attached to Lys296. Activation involves breaking of this ion pair. In UV cone pigments, the retinyl Schiff base is unprotonated, and hence such a salt bridge is not present; yet the pigment is inactive in the dark. Mutation of Glu108, which corresponds to rhodopsin's Glu113, to Gln yields a pigment that remains inactive in the dark. The apoproteins of both the wild-type and mutant, however, are constitutively active with the mutant being of significantly higher activity. Thus, one important role for preserving the negatively charged glutamate in the third helix of UV pigments is to maintain a less active opsin in a manner similar to rhodopsin. Ligand binding itself in the absence of a salt bridge is sufficient for deactivation.  相似文献   

15.
Site-directed mutagenesis has been used to change individual amino acids of the larvicidal 27,000 Mr delta-endotoxin of Bacillus thuringiensis var. israelensis. Basic and acidic residues have been systematically replaced by alanine, and the resulting mutant polypeptides analysed for cytolytic and larvicidal activity, and binding to phosphatidyl choline liposomes. Replacement of residues at positions 154, 163, 164, 213 and 225 results in proteins which accumulate as inclusions in recombinant Bacillus subtilis cells similar to the wild-type, but have considerably reduced in-vitro and in-vivo toxicity. One mutant (Glu45 to Ala45) results in a protein that has reduced activity in vitro, but retains wild-type larvicidal toxicity. In addition, seven other mutations of charged residues result in proteins which form small or no inclusions in recombinant cells, despite being produced at levels similar to the wild-type in six out of seven cases. In most instances, the toxicity of these aberrantly expressed proteins is considerably less than the wild-type, although one (Lys124 to Ala124) results in a polypeptide with approximately threefold increased activity in vitro. A secondary structural model is proposed to explain these observations.  相似文献   

16.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

17.
We generated a number of simian virus 40 (SV40) mutants with single amino acid substitutions in T antigen between residues 388 and 411. All but one mutant (398LV) replicated like wild-type SV40 and gave rise to normal-size plaques. Three different mutations at residue 402 (Asp to Glu, Asn, or His) totally prevented the formation of stable complexes with the cellular protein p53 in monkey cells but had no effect on virus replication. Only one other mutation in this region, involving residue 401 (Met to Thr), slightly inhibited the formation of T-monkey p53 complexes. The three mutant T antigens with substitutions at residue 402 also formed no stable complexes with human p53 but generated low levels of complexes with mouse p53. These results indicate that residue 402 is critical for binding to monkey and human p53 proteins and is important for binding to mouse p53. We suggest that it is one of several points of contact. In cells infected with any one of the three residue 402 mutant viruses. T antigen and p53 became increasingly phosphorylated, as they were in cells infected with wild-type virus. Our data therefore show that stable T-p53 complexes are not required for replication of SV40 in culture or for enhanced phosphorylation of either protein.  相似文献   

18.
19.
Delonix regia trypsin inhibitor (DrTI) consists of a single-polypeptide chain with a molecular mass of 22 kDa and containing two disulfide bonds (Cys44–Cys89 and Cys139–Cys149). Sequence comparison with other plant trypsin inhibitors of the Kunitz family reveals that DrTI contains a negatively charged residue (Glu68) at the reactive site rather than the conserved Arg or Lys found in other Kunitz-type trypsin inhibitors. Site-directed mutagenesis yielded five mutants containing substitutions at the reactive site and at one of the disulfide bonds. Assay of the recombinant proteins showed mutant Glu68Leu and Glu68Lys to have only 4–5% of the wild-type activity. These provide evidence that the Glu68 residue is the reactive site for DrTI and various other Kunitz-type trypsin inhibitors. The Cys139Gly mutant lost its inhibitory activity, whereas the Cys44Gly mutant did not, indicating that the second disulfide bond (Cys139–Cys149) is critical to DrTI inhibitory activity, while the first disulfide bond (Cys44–Cys89) is not required.  相似文献   

20.
The budding yeast Saccharomyces cerevisiae contains a single actin gene and the gene product, actin, is essential for growth. Two mutants of yeast actin that do not support yeast growth were prepared from yeast by coexpressing the mutant and a 6-histidine-tagged wild-type actin followed by separation of the wild-type and mutant actin using Ni-NTA chromatography as described elsewhere [Buzan, J., Du, J., Karpova, T., and Frieden, C. (1999) Proc. Natl. Acad. Sci. USA 96, 2823-2827]. The mutations, in muscle actin numbering, were at positions 334 (Glu334Lys) and 168 (Gly168Arg) and were chosen based on phenotypic changes observed in the behavior of actin mutants of Caenorhabditis elegans. Glu334 is located on the surface of actin between subdomains 1 and 3 while Gly168 is located in a region near actin-actin contacts in the actin filament. The Glu334Lys mutant polymerized slightly faster than wild-type yeast actin, suggesting that loss of interactions with some actin binding protein, rather than loss of actin-actin contacts, was responsible for its inability to support yeast growth. The Gly168Arg mutant polymerized at a rate similar to wild-type but the extent was considerably less, kinetic characteristics suggesting a high critical concentration (ca. 4 microM) without a large change in the ability to form nuclei for the nucleation-elongation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号