首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac nonmyofibrillar proteins from copper-deficient rats appear to have diminished quantity of selected peptides. Identification of some of these peptides was the objective of the present study. Male weanling Long-Evans rats were fed either copper-adequate (n=6) or copper-deficient (n=6) diets for 5 wk. At the end of 5 wk, the rat hearts were removed, quick frozen in liquid nitrogen, and non-myofibrillar proteins separated using sodium-dodecyl-sulfate poly-acrylamide gel electrophoresis (SDS-PAGE). A peptide in the 16-kDa mol-wt region was diminished in copper-deficient rats. Blotting of gels to an Immobilon-P membrane and subsequent sequencing of the amino acids identified the peptide as the δ subunit of mitochondrial ATP synthase. Blotting of gels to nitrocellulose followed by Western blot assay for cytochrome C oxidase using antibodies against the enzyme complex revealed decreased protein content in the copper-deficient rat for this enzyme, primarily the nuclear encoded subunits.  相似文献   

2.
Dietary copper deficiency has been shown to reduce copper-dependent superoxide dismutase (SOD) activity and to increase lipid peroxidation in rats. Circulating reduced glutathione (GSH) concentrations are elevated in copper-deficient (CuD) rats, which suggests an increased GSH synthesis or decreased degradation, perhaps as an adaptation to the oxidative stress of copper deficiency. GSH synthesis was examined in isolated hepatocytes from CuD rats. Isolated hepatocytes were prepared by collagenase perfusion and incubated in Krebs-Henseleit bicarbonate buffer, pH 7.4, 10 mM glucose, 2.5 mM Ca2+ in the presence and absence of 1.0 mM buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis. Cell viability was assessed by trypan blue exclusion. GSH and oxidized glutathione (GSSG) were measured by the glutathione reductase recycling assay. Copper deficiency depressed hepatocyte Cu by greater than 90% and increased intracellular GSH by 41-117% over the 3-h incubation, with a two- to threefold increase in the rate of intracellular GSH synthesis. Intracellular GSSG values were minimally influenced by CuD, with a constant mol% GSSG. Extracellular total glutathione (GSH + 2GSSG) synthesis was increased by approximately 33%. Both intracellular GSH and extracellular total glutathione synthesis were inhibited by BSO. The pattern of food consumption in CuD rats, meal fed versus ad libitum fed, had no effect on glutathione synthesis. The results indicate an increased hepatic GSH synthesis as a response to dietary copper deficiency and suggest an interrelationship between the essential nutrients involved in oxyradical metabolism.  相似文献   

3.
4.
In copper-deficient rats, oral intubation of copper increases the rate of ceruloplasmin synthesis without affecting general synthesis of plasma or liver proteins. It also restores the enzyme from half to full activity. Copper given by injection at doses commonly employed has additional nonspecific effects on protein synthesis and in some strains of rats produces severe hemolysis. In contrast to deficient rats, in normal rats copper does not elevate plasma ceruloplasmin unless hemolysis also occurs. Thus, at least in deficiency, copper availability controls the rate of synthesis, acitvation, and plasma concentration of ceruloplasmin.  相似文献   

5.
Folate and homocysteine metabolism in copper-deficient rats.   总被引:2,自引:0,他引:2  
To investigate the effect of copper deficiency on folate and homocysteine metabolism, we measured plasma, red-cell and hepatic folate, plasma homocysteine and vitamin B-12 concentrations, and hepatic methionine synthase activities in rats. Two groups of male Sprague-Dawley rats were fed semi-purified diets containing either 0. 1 mg (copper-deficient group) or 9.2 mg (control group) of copper per kg. After 6 weeks of dietary treatment, copper deficiency was established as evidenced by markedly decreased plasma and hepatic copper concentrations in rats fed the low-copper diet. Plasma, red-cell, hepatic folate, and plasma vitamin B-12 concentrations were similar in both groups, whereas plasma homocysteine concentrations in the copper-deficient group were significantly higher than in the control group (P<0.05). Copper deficiency resulted in a 21% reduction in hepatic methionine synthase activity as compared to the control group (P<0.01). This change most likely caused the increased hepatic 5-methyltetrahydrofolate and plasma homocysteine concentrations in the copper-deficient group. Our results indicate that hepatic methionine synthase may be a cuproenzyme, and plasma homocysteine concentrations are influenced by copper nutriture in rats. These data support the concept that copper deficiency can be a risk factor for cardiovascular disease.  相似文献   

6.
Copper deficiency results in alterations in lipid metabolism that include elevations in serum cholesterol and triglycerides and a decrease in whole-body respiratory quotient. Copper-deficient animals are also leaner even though electron micrographs of the myocardium present increased lipid droplet accumulation. To address whether a compromised copper status impacts triglyceride deposition in a tissue-specific manner, the activity of lipoprotein lipase was measured in adipose tissue and cardiac and skeletal muscle. Weanling rats fed a copper-restricted diet (<1 ppm) for 6 wk demonstrated a greater than twofold increase in cardiac lipoprotein lipase activity concomitant with a significant reduction in adipose tissue lipoprotein lipase activity. Skeletal muscle lipoprotein lipase activity was not altered by the copper-deficient state. The results of this study suggest that copper deficiency may induce a tissue-specific alteration in lipoprotein lipase activity in rats, which may contribute to the notable deposition of lipid substance in myocardium and the concomitant general body leanness.  相似文献   

7.
Ethane quantitated in the expired alveolar gas is a noninvasive measure of free radical activity. This method has been criticized for lack of control of minute ventilation (VE) in spontaneously breathing animals, although ethane, which is poorly soluble in tissues, should not be affected by changes in VE. We measured ethane elimination rates in six strain 13 guinea pigs (GP13) during spontaneous room air breathing and in six room air breathing, pentobarbital-anesthetized, tracheostomized, externally warmed, mechanically ventilated GP13s at various levels of VE. In the ventilated animals, weight0.75/VE (metabolic activity corrected for VE) was a linear function of arterial CO2 tension (PaCO2) drawn from arterial line (r = 0.72, P less than 0.005). However, weight0.75/VE did not correlate with ethane elimination rates (r = 0.12, not significant). The mean (+/- SD) ethane elimination rates in the spontaneously breathing animals was 3.15 +/- 0.96 pmol.min-1.100 g-1 and was not significantly different from the mean rate in the mechanically ventilated animals (3.11 +/- 1.37) over a range of VE's. These data demonstrate that ethane elimination rates are not affected by changes in VE and are unaffected by pentobarbital anesthesia.  相似文献   

8.
The effects of copper and insulin on lipogenesis and glucose tolerance were studied using diabetic, copper-deficient rats. Diabetes was induced by intraperitoneal injection of 50 mg streptozotocin/kg body weight to rats fed a sucrose-copper deficient diet for 7 weeks. Five days later the rats were injected intraperitoneally with [14C]glucose with either saline, insulin, copper, or copper plus insulin. The disappearance of serum [14C]glucose at 30, 60, and 120 min postinjection and the incorporation of [14C]glucose into lipid of epididymal fat 2 hr after administration were determined. The combined effect of copper and insulin significantly decreased peak blood glucose at 30 min and increased the incorporation of [14C]glucose into lipid in the epididymal fat pad when compared to either copper or insulin alone. The enhancement of glucose utilization may be due to a formation of a more stable complex which will increase insulin binding and/or decrease its degradation.  相似文献   

9.
Copper deficiency adversely affects the extracellular matrix of the arterial wall, leading to cardiovascular lesions. To study the lesions resulting from copper deficiency, the composition of proteoglycans from aortas of copper-deficient rats was compared with proteoglycans of aortas from copper-supplemented rats. Copper deficiency in rats was verified by copper levels in adrenal glands (mean +/- SE, 0.37 +/- 0.07 vs 1.03 +/- 0.17 micrograms/g wet wt in supplemented rats). The proteoglycans were isolated from the aorta by extraction with 4 M guanidine-HCl and by digestion of the tissue with elastase. The proteoglycans were purified by CsCl isopycnic centrifugation and fractionated by gel filtration. The fractions were characterized for molecular size and glycosaminoglycan composition. Total uronate in the aortas from copper-deficient rats was 25% greater than in aortas from copper-supplemented rats, and the proteoglycans from copper-deficient rat aortas were of greater molecular size. Among the glycosaminoglycans the concentration (microgram/mg tissue) of isomeric chondroitin sulfates, particularly dermatan sulfate, was greater in copper-deficient animals than in copper-supplemented animals. These observations are similar to earlier findings in experimental atherosclerosis and to a response of cardiovascular connective tissue to injury.  相似文献   

10.
Dietary copper depletion results in cardiac hypertrophy and ultrastructural alterations. The objective of this study was to determine the components that contribute to cardiac enlargement. Two groups (n = 4) of male, weaning, Sprague-Dawley rats were fed ad libitum with copper-adequate or copper-deficient diets for five weeks. Cross sectional transmission electron micrographs from both groups were evaluated using image analysis to quantify absolute area occupied by myocyte, mitochondria, myofibril, and other intracellular material. Copper-deficient rats had larger myocytes, increased area of mitochondria, and increased ratio of mitochondria :myofibril as well as mitochondria:myocyte. Copper deficiency did not change the absolute area occupied by myofibrils. These data suggested that increase in the absolute mitochondria area is the major contributory factor to the cardiac hypertrophy in copper deficiency. Under the conditions used, myofibril has minimal role toward contributing to the hypertrophic state. The pathology reported resembles human forms of genetic mitochondrial cardiomyopathies. The copper-deficient rat may be a useful model to investigate the underlying biochemical or molecular responses when peptides of enzymes are deleted.  相似文献   

11.
Cardiac mitochondrial respiration, ATP synthase activity, and membrane potential and intactness were evaluated in copper-deficient rats. In the presence of NADH, both copper-deficient and copper-adequate mitochondria had very low oxygen consumption rates, indicating membrane intactness. However copper-deficient mitochondria had significantly lower oxygen consumption rates with NADH than did copper-adequate mitochondria. Copper-deficient mitochondria had significantly lower membrane potential than did copper-adequate mitochondria using fluorescent dyes. Copper-deficient mitochondria had significantly lower state 3 oxygen consumption rates and were less sensitive to inhibition by oligomycin, an ATP synthase inhibitor. Copper-deficient and copper-adequate mitochondria responded similiarly to CCCP. No difference was observed in mitochondrial ATPase activity between copper-deficient and copper-adequate rats using submitochondrial particles. We conclude that cardiac mitochondrial respiration is compromised in copper-deficient rats, and may be related to an altered ATP synthase complex and/or a decreased mitochondrial membrane potential.  相似文献   

12.
Dietary copper deficiency in animals is often associated with cardiac enlargement and anemia. In this study we examined the hypothesis that anemia leads to a high cardiac output state that results in work-induced (physiological) cardiac hypertrophy. Blood pressure was measured by carotid cannulation and cardiac output was measured by aortic flow probe in anesthetized, open-chested rats that had been subjected to various degrees of dietary copper deficiency for five weeks. Cardiac output was unaffected by dietary copper deficiency. However, the components of cardiac output were found to vary reciprocally, heart rate decreasing and stroke volume increasing with copper deficiency. Further, total peripheral resistance, calculated as the ratio of mean arterial blood pressure and cardiac output, was depressed by dietary copper deficiency. These findings suggest that bradycardia and depression of vascular resistance induced by copper deficiency contribute to increased venous filling and a resultant increase in stroke volume; these factors may lead to cardiac hypertrophy. A significant correlation between stroke volume and heart weight in rats of varying copper status supports this conclusion.  相似文献   

13.
Point mutations scattered throughout the sequence of Cu,Zn superoxide dismutase (SOD1) cause a subset of amyotrophic lateral sclerosis (ALS) cases. SOD1 is a homodimer in which each subunit binds one copper atom and one zinc atom. Inclusions containing misfolded SOD1 are seen in motor neurons of SOD1-associated ALS cases. The mechanism by which these diverse mutations cause misfolding and converge on the same disease is still not well understood. Previously, we developed several time-resolved techniques to monitor structural changes in SOD1 as it unfolds in guanidine hydrochloride. By measuring the rates of Cu and Zn release using an absorbance-based assay, dimer dissociation through chemical cross-linking, and β-barrel conformation changes by tryptophan fluorescence, we established that wild-type SOD1 unfolds by a branched pathway involving a Zn-deficient monomer as the dominant intermediate of the major pathway, and with various metal-loaded and Cu-deficient dimers populated along the minor pathway. We have now compared the unfolding pathway of wild-type SOD1 with those of A4V, G37R, G85R, G93A, and I113T ALS-associated mutant SOD1. The kinetics of unfolding of the mutants were generally much faster than those of wild type. However, all of the mutants utilize the minority pathway to a greater extent than the wild-type protein, leading to greater populations of Cu-deficient intermediates and decreases in Zn-deficient intermediates relative to the wild-type protein. The greater propensity of the mutants to populate Cu-deficient states potentially implicates these species as a pathogenic form of SOD1 in SOD1-associated ALS and provides a novel target for therapeutic intervention.  相似文献   

14.
15.
The purpose of this study was to examine, by transmission electron microscopy (TEM), the nature of the protective effect of dimethyl sulfoxide (DMSO) on hearts of copper-deficient (CuD) rats. Male, weanling Sprague-Dawley rats were fed, in a two-way design, CuD (0.45 micrograms/g) or copper-sufficient (CuS, 5.4 micrograms/g) diets with or without 5% DMSO in their drinking water. After 28 d, CuD rats showed typical signs of copper deficiency, including reduced liver and heart Cu, enlarged hearts, and anemia. DMSO-treated, CuD rats had lower heart weights and higher hematocrits than CuD rats. DMSO enhanced organ Cu concentrations in CuS, but not in CuD rats. TEM of CuD hearts showed myofibrillar distortion and enlarged, vacuolated mitochondria with fragmented cristae; morphometric measurements indicated an enhanced mitochondrial/myofibrillar ratio (mito/myo), but an increase of both mitochondrial and myofibrillar mass relative to CuS hearts. Compared to CuD hearts, DMSO-treated CuD hearts showed better mitochondrial morphology and myofibrillar organization, as well as a greater mito/myo, but lower mitochondrial and myofibrillar masses. Its function as a hydroxyl radical scavenger indicates that DMSO could protect CuD hearts, in particular their mitochondria, against oxidative damage. However, because measurements of thiobarbituric acid reactive substances were not consistent with this theory, other metabolic mechanisms, direct and indirect, must be examined.  相似文献   

16.
Dietary restriction without malnutrition prolongs life and has a beneficial effect on age-related diseases and metabolic derangements. To test the effect of food restriction on ethane production rate, ethane exhalation was measured in rats with partial food restriction. Ethane production rate in room air in rats fed 60% of food consumed by ad libitum-fed animals for 2 wk was significantly reduced (3.50 +/- 0.25 vs. 5.21 +/- 0.34 pmol.min-1.100 g body wt-1, P less than 0.01). In 100% oxygen, ethane production in food-restricted rats was not different from that of ad libitum-fed rats (21.81 +/- 1.25 vs. 19.57 +/- 1.89 pmol.min-1.100 g-1). Fifteen hours of fasting compared with ad libitum feeding reduced ethane production modestly in room air (4.37 +/- 0.45 vs. 5.21 +/- 0.34 pmol.min-1.100 g-1) and more significantly in 100% oxygen (12.37 +/- 0.78 vs. 19.57 +/- 1.89 pmol.min-1.100 g-1). Thus, in 100% oxygen, 15 h of fasting, compared with ad libitum feeding, resulted in an approximately 40% decrease in ethane production rate. It is concluded that short-term food restriction significantly reduces ethane exhalation rate in rats when measured in room air.  相似文献   

17.
Copper deficiency in rats raises plasma cholesterol concentration while reducing live cholesterol concentration. One consequence of this cholesterol redistribution is the accumulation of a large high-density lipoprotein (HDL) particle rich in apolipoprotein E (apo E). The purpose of this study was to determine, using an in vitro binding assay, if the interaction of apo E-rich HDL with hepatic lipoprotein binding sites may be affected by copper deficiency. Male Sprague-Dawley rats were divided into two dietary treatments (copper-deficient and -adequate) and placed on a dietary regimen for 8 weeks. Subsequent to exsanguination, hepatic plasma membranes were prepared and apo E-rich HDL was isolated from rats of each treatment by ultracentrifugation, agarose column chromatography, and heparin-Sepharose affinity chromatography. Total binding and experimentally derived specific binding of 125I-apo E-rich HDl to hepatic plasma membranes indicated greater binding when lipoproteins and membranes from copper-deficient animals were used in the assay compared to controls. Scatchard analysis of specific binding data indicated that equilibrium binding affinity (Kd) was also affected by copper deficiency. The hepatic binding sites recognizing apo E-rich HDL were not affected by EDTA or pronase, of relatively high capacity, and recognized a variety of other rat lipoproteins.  相似文献   

18.
Morphological observations in some tissues indicate that dietary copper deficiency results in structural damage to mitochondria. The purpose of this study was to determine whether mitochondrial function is impaired as well. Male, weanling Sprague-Dawley rats were fed diets deficient or sufficient in copper for 4 weeks. Mitochondria were isolated from heart, liver, kidney cortex, and kidney medulla. P/O ratio, state 3 and state 4 respiration rates (oxygen consumed in the presence and absence of ADP, respectively), and acceptor control index (ratio of state 3:state 4) were determined using succinate or pyruvate/malate as substrate. State 3 respiration rate in mitochondria from copper-deficient hearts and livers was lower than in mitochondria from copper-sufficient hearts. Copper deficiency reduced the state 4 respiration rate only in cardiac mitochondria. Neither respiration rate was affected by copper deficiency in mitochondria from kidney medulla or cortex. P/O ratio was not significantly affected by copper deficiency in any tissue examined. Acceptor control index was reduced only in liver mitochondria. The observed decreases in respiration rates are consistent with decreased cytochrome c oxidase activity, shown by others to occur in mitochondria isolated from hearts and livers of copper-deficient rats.  相似文献   

19.
The administration of very low doses of bacterial endotoxin protects rats during exposure to hyperoxia and is associated with the induction of lung antioxidant enzyme activities. Copper-deficient rats have increased susceptibility to O2 toxicity, which may be related to their decreased lung superoxide dismutase activity (SOD) or decreased plasma ceruloplasmin concentrations. To determine whether endotoxin can protect against hyperoxia in this susceptible model, we exposed copper-deficient and control rats to a fractional inspiratory concentration of O2 greater than 0.95 for 96 h after pretreatment with 500 micrograms/kg of bacterial endotoxin or phosphate-buffered saline (PBS). Mortality in the copper-deficient and control rats given PBS and exposed to O2 for 96 h was 100%. Copper-deficient rats died significantly earlier during the exposure than controls. No mortality occurred in either group treated with endotoxin and hyperoxia despite the decreased activity of copper-dependent enzymes in the copper-deficient rats. Copper-deficient rats treated with endotoxin and exposed to hyperoxia did increase lung Cu-Zn-SOD activity, but activity remained below levels found in air-exposed controls. Mn-SOD activity was found to be induced above air-exposed controls in the copper-deficient rats treated with endotoxin and exposed to hyperoxia. Hyperoxic exposure resulted in a marked increase in plasma ceruloplasmin concentrations in the control rats, but no increases in ceruloplasmin occurred in the copper-deficient animals. Endotoxin protects copper-deficient rats from hyperoxia despite their decreased lung Cu-Zn-SOD activity, and decreased plasma ceruloplasmin.  相似文献   

20.
Methanosarcina barkeri strain 227 produced ethane during growth on H2/CO2 when ethanol was added to the medium in concentrations of 89–974 mM; ethane production varied from 14 to 38 nmoles per tube (20 ml gas phase, 5.7 ml liquid) with increasing ethanol concentrations. Cells grown to mid-logarithmic phase (A600 0.46, protein = 64 g/ml) on H2/CO2, thoroughly flushed with H2/CO2, then exposed to ethanol, produced maximal ethane levels (at 585 and 974 mM ethanol) of about 215 nmoles per tube, with an ethane/methane ratio of 1×10-3. Mid-logarithmic-phase cultures of Methanosarcina barkeri strain Fusaro also produced ethane (up to 20 nmoles per tube) when exposed to ethanol. Cultures of strain 227 growing on methanol in the absence of H2 produced 6 nmoles per tube of ethane when supplemented with ethanol whereas those lacking ethanol but containing H2 and/or methanol produced 1.6 nmoles per tube. Cultures of Methanococcus deltae strains LH and RC, Methanospirillum hungatei or Methanobacterium thermoautotrophicum produced 5 nmoles ethane per tube when grown in medium containing ethanol. Ethanol concentrations of 177–886 mM were inhibitory to growth of all methanogens examined. Production of ethane by Methanosarcina was inhibited by >62 mM methanol, and both methanogenic inhibitors tested, CCl4 and Br–CH2–CH2–SO inf3 sup- , inhibited ethane and methane production concurrently. The data suggest that ethanol is converted to ethane by Methanosarcina species using the terminal portion of the methanol-to-methane pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号