首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophages are bacterial viruses and have been used for almost a century as antimicrobial agents. In the West, their use diminished when chemical antibiotics were introduced, but they remain a common therapeutic approach in parts of eastern Europe. Increasing antibiotic resistance in bacteria has driven the demand for novel therapies to control infections and led to the replacement of antibiotics in animal husbandry. Alongside this, increased pressure to improve food safety has created a need for faster detection of pathogenic bacteria. Hence, there has been a resurgence of interest in bacteriophage applications, and this has encouraged the emergence of a large number of biotech companies hoping to commercialize their use. Research in Europe and the United States has increased steadily, leading to the development of a range of applications for bacteriophage agents for the healthcare, veterinary and agricultural sectors. This article will attempt to answer the question of whether bacteriophages are now delivering on their potential.  相似文献   

2.
Any outbreak of an Office International des Epizooties trade-disrupting (previously List-A) disease, such as classical swine fever or foot and mouth disease in a previously disease-free region can have severe consequences for nonhuman animal welfare. In addition to animals destroyed for the purposes of disease eradication, certain preexisting trade patterns may result in welfare slaughter programs affecting many more animals than the disease eradication effort. Welfare slaughter is the destruction of healthy animals to prevent overcrowding on farms under movement restriction and as a consequence of loss of access to live animal export markets. Governments of European countries have anticipated welfare slaughter as part of their disease eradication preparedness. The concept of welfare slaughter and the resource implications thereof have not been included in current, published, livestock disease emergency-planning documents in Canada or the United States. Animal welfare, specifically the killing of healthy animals (not foreign animal disease eradication) has been the focus of public concern in recent disease-eradication efforts in Europe. North American organizations responsible for livestock exotic disease emergency preparedness need to expand their plans to include welfare slaughter.  相似文献   

3.
Antibiotics have been a panacea in animal husbandry as well as in human therapy for decades. The huge amount of antibiotics used to induce the growth and protect the health of farm animals has lead to the evolution of bacteria that are resistant to the drug’s effects. Today, many researchers are working with bacteriophages (phages) as an alternative to antibiotics in the control of pathogens for human therapy as well as prevention, biocontrol, and therapy in animal agriculture. Phage therapy and biocontrol have yet to fulfill their promise or potential, largely due to several key obstacles to their performance. Several suggestions are shared in order to point a direction for overcoming common obstacles in applied phage technology. The key to successful use of phages in modern scientific, farm, food processing and clinical applications is to understand the common obstacles as well as best practices and to develop answers that work in harmony with nature.  相似文献   

4.
Bacteriophages, highly prevalent in all environments, have found their use in medicine as an alternative or complement to antibiotics. The therapeutic use of bacteriophages was particularly popular in the 1920s and 1930s, until the discovery and introduction of antibiotics. Due to the dynamic growth of antibiotic resistance among bacterial strains, numerous international institutions (such as the FDA) have declared the search for novel treatment modalities to be of the highest priority. To date, bacteriophage therapy has not been registered for general use in Western countries. The regulation of biological medicinal products (within medicinal product regulation) does not contain a specific documentation frame for bacteriophages (only for vaccines, blood derived products, etc.) which, as active substances, need to meet specific requirements. Recently, the FDA allowed bacteriophage therapy to be used in the United States, via the Emergency Investigational New Drug scheme; clinical trials to compare the safety and efficacy of bacteriophage therapy are also permitted. To date, several therapeutic products of this type have made it to phase I or II; some clinical programmes have also been completed. This article cites numerous animal model studies and registered clinical trials, showing the safety and effectiveness of bacteriophage therapy, including infections caused by bacterial strains resistant to antibiotic treatment.  相似文献   

5.
Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage‐derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram‐positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.  相似文献   

6.
The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a “post-antibiotic era”, the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use.  相似文献   

7.
8.
Seventy-seven animal isolates of Salmonella enterica serovar Enteritidis (S. Enteritidis) obtained from the United States were analyzed by phage typing and pulsed field gel electrophoresis (PFGE). Thirty-nine strains were found with phage types (PT) 4, 8, and 13a. When the chromosomal DNA of these 39 isolated strains with PT4, 8, and 13a were digested with XbaI, SpeI and NotI, followed by PFGE analysis, 28 strains were found with a pattern combination of X4S4N4, which was the major subtype. When PFGE patterns of the US isolates with PT 4 and 8 were compared with those of the Taiwanese and German isolates, pattern X3S3N3 was confirmed to be the world-wide subtype shared by PT 4 isolates, as previously reported, while pattern X4S4N4 was newly found to be the most common subtype shared by PT 8 strains. The presence of such major world-wide clones, however, does not necessarily mean that these clones are highly virulent, at least not according to the results of invasiveness assays using cultured human intestinal epithelium cell line Int-407 and living BALB/mice.  相似文献   

9.
In this article, I examine West African foods sold mainly in specialty grocery stores, focusing on how technologies used in food production in West Africa are referenced in the brand names and packaging of processed African foods sold in the United States. Through their association with "timeless" West African food-processing techniques, such foods evoke memories of childhood and home. Yet the transformation of West African foods through new technologies of processing, packaging, and branding reflects different time and health concerns of West African immigrants living in the United States. Through their purchase of time-saving, mass-produced, and hygienically packaged foodstuffs, which are ideologically similar to but technologically very different from the production processes and cooking in Africa, West Africans in the United States use food to maintain social relations with their particular families, hometown associations, and religious groups, while also constituting national, regional, and global connections through the reinvention of food traditions.  相似文献   

10.
In order to protect themselves and their animals, persons involved in animal-assisted interventions, as well as those providing therapeutic interventions involving animals and those seeking to study such situations should understand when a law provides a right to be accompanied by an assistance or service animal. Using applicable federal laws in the United States, this article defines service, assistance, and therapy animals and analyzes the circumstances under which persons utilizing these animals have the legal right of access to public places and housing. The article also discusses the intersection of federal, state, and local law in the United States and provides ways state and local laws may provide for greater access for persons accompanied by service, assistance, and therapy animals.  相似文献   

11.
Oats constitute an important feed grain crop in the United States and many other countries. World production in pounds averages one- third that of wheat and two- fifths that of rice or corn. The United States and Canada produce nearly half of the world crop. Oats are utilized primarily as feed for domestic animals. Although their bone- and muscle- building ingredients and other nutrient values are well known, less than five percent of the world crop is used as human food.  相似文献   

12.
Management increases genetic diversity of honey bees via admixture   总被引:1,自引:0,他引:1  
Harpur BA  Minaei S  Kent CF  Zayed A 《Molecular ecology》2012,21(18):4414-4421
The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.  相似文献   

13.
Bacteriophages and its applications: an overview   总被引:1,自引:0,他引:1  
Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d’Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.  相似文献   

14.
Since the 1940s, perceived companion animal overpopulation in the United States has been an important issue to the animal welfare community (Moulton, Wright, & Rinky, 1991). This surplus of animals has resulted in millions of dogs and cats being euthanized annually in animal shelters across the country. The nature and scope of this problem have been notoriously difficult to characterize. The number of animal shelters in the United Stares, the demographics of the population of animals passing through them, and the characteristics of per owners relinquishing animals are poorly understood. What portion of these animals are adopted or euthanized, why they are relinquished, and their source of acquisition are all questions for which there have been little data. Consequently, we are no closer to answering the fundamental question of how and why many animals are destroyed each year in shelters (Arkow, 1994).  相似文献   

15.
The food safety perspective of antibiotic resistance   总被引:7,自引:0,他引:7  
Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. Antibiotic resistant strains of bacteria are an increasing threat to animal and human health, with resistance mechanisms having been identified and described for all known antimicrobials currently available for clinical use. There is currently increased public and scientific interest regarding the administration of therapeutic and sub-therapeutic antimicrobials to animals, due primarily to the emergence and dissemination of multiple antibiotic resistant zoonotic bacterial pathogens. This issue has been the subject of heated debates for many years, however, there is still no complete consensus on the significance of antimicrobial use in animals, or resistance in bacterial isolates from animals, on the development and dissemination of antibiotic resistance among human bacterial pathogens. In fact, the debate regarding antimicrobial use in animals and subsequent human health implications has been going on for over 30 years, beginning with the release of the Swann report in the United Kingdom. The latest report released by the National Research Council (1998) confirmed that there were substantial information gaps that contribute to the difficulty of assessing potential detrimental effects of antimicrobials in food animals on human health. Regardless of the controversy, bacterial pathogens of animal and human origin are becoming increasingly resistant to most frontline antimicrobials, including expanded-spectrum cephalosporins, aminoglycosides, and even fluoroquinolones. The lion's share of these antimicrobial resistant phenotypes is gained from extra-chromosomal genes that may impart resistance to an entire antimicrobial class. In recent years, a number of these resistance genes have been associated with large, transferable, extra-chromosomal DNA elements, called plasmids, on which may be other DNA mobile elements, such as transposons and integrons. These DNA mobile elements have been shown to transmit genetic determinants for several different antimicrobial resistance mechanisms and may account for the rapid dissemination of resistance genes among different bacteria. The increasing incidence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. Although much scientific information is available on this subject, many aspects of the development of antimicrobial resistance still remain uncertain. The emergence and dissemination of bacterial antimicrobial resistance is the result of numerous complex interactions among antimicrobials, microorganisms, and the surrounding environments. Although research has linked the use of antibiotics in agriculture to the emergence of antibiotic-resistant foodborne pathogens, debate still continues whether this role is significant enough to merit further regulation or restriction.  相似文献   

16.
Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended.  相似文献   

17.
副溶血弧菌是水产动物弧菌病的重要病原微生物之一,又是食源性致病菌,摄入被其污染的水产品后可引发肠胃炎、败血症和坏死性筋膜炎等疾病,对水产养殖业及公共卫生安全均具有较大威胁。抗生素大量使用甚至滥用,不可避免地会带来水产品药物残留和细菌耐药等问题,开发安全有效的抗生素替代品迫在眉睫。作为细菌病毒,噬菌体具有宿主特异性强、易筛选、易保存、高效直接等优点,在水产养殖病害防控和食品安全领域受到广泛关注。本文概述了水产动物的副溶血弧菌病及该菌噬菌体防治的研究进展,为副溶血弧菌噬菌体及制剂应用于水产养殖病害生物防控提供参考。  相似文献   

18.
The concept of using bacteriophages (bacterial viruses) as biocontrol agents in pest management emerged shortly after their discovery. Although research on phage-based biopesticides temporarily stopped with the advent of antibiotics, the appearance of antibiotic resistant bacterial strains led to a renewed interest in phage therapy for control of plant diseases. In the past twenty years numerous successful experiments have been reported on bacteriophage-based biocontrol measures, and several comprehensive studies have recently been published discussing detailed results of phage application practices in pest management, mainly from North American authors. The present review focuses on bacteriophage-mediated control of fire blight (caused by Erwinia amylovora (Burill) Winslow et al.), the most devastating bacterial disease of pome fruits. Research results from North America are discussed along with recent data from European laboratories.  相似文献   

19.
Women are protected from stroke relative to men until the years of menopause. Because stroke is the leading cause of serious, long-term disability in the United States, modeling sex-specific mechanisms and outcomes in animals is vital to research. Important research questions are focused on the effects of hormone replacement therapy, age, reproductive status, and identification of sex-specific risk factors. Available research relevant to stroke in the female has almost exclusively utilized rodent models. Gender-linked stroke outcomes are more detectable in experimental studies than in clinical trials and observational studies. Various estrogens have been extensively studied as neuroprotective agents in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data in animal and cell models are based on 17 beta estradiol and suggest that this steroid is neuroprotective in injury from ischemia/reperfusion. However, current evidence for the clinical benefits of hormone replacement therapy is unclear. Future research in this area will need to expand into stroke models utilizing higher order, gyrencephalic animals such as nonhuman primates if we are to improve extrapolation to the human scenario and to direct and enhance the design of ongoing and future clinical studies and trials.  相似文献   

20.
体细胞克隆技术是将已分化的体细胞移到去核的成熟卵母细胞中,通过体外激活和培养,再移植入受体母畜子宫内,繁殖出具有相同基因型后代的一种技术。该技术可以大幅提升繁殖效率,并提供高质、充足和营养丰富的动物食品。近年来,美国、日本和欧洲等国家相继宣布体细胞克隆动物食品可以上市。然而,目前体细胞克隆效率相当低下,即使是出生的克隆动物也往往伴随发育畸形或高死亡率等现象,在对克隆动物发育异常知之甚少的情况下,宣布克隆动物产品上市是否为时过早?以下综述了克隆牛肉、奶及其产品安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号