首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The plight of the marine fisheries is attracting increasing attention as unsustainably high exploitation levels, exacerbated by more extreme climatic conditions, are driving stocks to the point of collapse. The North Atlantic cod (Gadus morhua), a species which until recently formed a major component of the demersal fisheries, has undergone significant declines across its range. The North Sea stock is typical of many, with a spawning stock biomass that has remained below the safe biological limit since 2000 and recruitment levels near the lowest on record. Cod within the North Sea are currently managed as a single stock, and yet mounting empirical evidence supports the existence of a metapopulation of regionally variable, genetically distinct, sub-stocks. Applying the same management strategies to multiple stocks that differ in their resilience to exploitation inevitably results in the overfishing and likely collapse of the weaker components. Indeed, recent studies have identified two North Sea spawning stocks that have undergone disproportionally large collapses with very substantial reductions in egg production. Similarly affected cod stocks in the northwest Atlantic have shown little evidence of recovery, despite fishery closures. The possible implications of ignoring sub-structuring within management units for biocomplexity, local adaptation and ecosystem stability are considered.  相似文献   

2.
Overfishing, pollution and other environmental factors have greatly reduced commercially valuable stocks of fish. In a 2006 Science article, a group of ecologists and economists warned that the world may run out of seafood from natural stocks if overfishing continues at current rates. In this paper, we explore the interaction between a constant proportion harvest policy and recruitment dynamics. We examine the discrete-time constant proportion harvest policy discussed in Ang et al. (2009) and then expand the framework to include stock-recruitment functions that are compensatory and overcompensatory, both with and without the Allee effect.We focus on constant proportion policies (CPPs). CPPs have the potential to stabilize complex overcompensatory stock dynamics, with or without the Allee effect, provided the rates of harvest stay below a threshold. If that threshold is exceeded, CPPs are known to result in the sudden collapse of a fish stock when stock recruitment exhibits the Allee effect. In case studies, we analyze CPPs as they might be applied to Gulf of Alaska Pacific halibut fishery and the Georges Bank Atlantic cod fishery based on harvest rates from 1975 to 2007. The best fit models suggest that, under high fishing mortalities, the halibut fishery is vulnerable to sudden population collapse while the cod fishery is vulnerable to steady decline to zero. The models also suggest that CPP with mean harvesting levels from the last 30 years can be effective at preventing collapse in the halibut fishery, but these same policies would lead to steady decline to zero in the Atlantic cod fishery. We observe that the likelihood of collapse in both fisheries increases with increased stochasticity (for example, weather variability) as predicted by models of global climate change.  相似文献   

3.
A newly developed DNA microarray was applied to identify mitochondrial (mt) DNA haplotypes of more than 2200 chum salmon in the Bering Sea and North Pacific Ocean in September 2002 and also 2003, when the majority of maturing fish were migrating toward their natal river. The distribution of haplotypes occurring in Asian and North American fish in the surveyed area was similar in the 2 years. A conditional maximum likelihood method for estimation of stock compositions indicated that the Japanese stocks were distributed mainly in the north central Bering Sea, whereas the Russian stocks were mainly in the western Bering Sea. The North American stocks were abundant in the North Pacific Ocean around the Aleutian Islands. These results indicate that the Asian and North American stocks of chum salmon are nonrandomly distributed in the Bering Sea and the North Pacific Ocean, and further the oligonuleotide DNA microarray developed by us has a high potential for identification of stocks among mixed ocean aggregates of high-seas chum salmon.  相似文献   

4.
While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem‐based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate‐induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.  相似文献   

5.
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species – Atlantic salmon and European sea bass – mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process‐based ecological–economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.  相似文献   

6.
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time‐series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern‐ and north‐easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries‐independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish.  相似文献   

7.
Variation at the three microsatellite (ms) DNA loci in chum salmon was applied to estimate preliminarily the stock composition using a conditional maximum likelihood method in more than 700 fish collected from 14 stations in the Bering Sea and adjacent North Pacific Ocean during September 2003. Regional stock assignment accuracy with these msDNA markers was nearly the same as the previous estimation with mitochondrial (mt) DNA for the Japanese and North American stocks, but decreased for Russian stocks. The temporal stock estimation with msDNA gave a nonrandom distribution pattern of chum stocks, in that the Japanese and Russian stocks increased in the western to central Bering Sea, and the North American stocks were abundant in the eastern Bering Sea and near the Aleutian Islands. However, predominance of the North American stocks in nearly all of the surveyed area was different from the previous mtDNA estimation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In order to provide better fisheries management and conservation decisions, there is a need to discern the underlying relationship between the spawning stock and recruitment of marine fishes, a relationship which is influenced by the environmental conditions. Here, we demonstrate how the environmental conditions (temperature and the food availability for fish larvae) influence the stock–recruitment relationship and indeed what kind of stock–recruitment relationship we might see under different environmental conditions. Using unique zooplankton data from the Continuous Plankton Recorder, we find that food availability (i.e. zooplankton) in essence determines which model applies for the once large North Sea cod (Gadus morhua) stock. Further, we show that recruitment is strengthened during cold years and weakened during warm years. Our combined model explained 45 per cent of the total variance in cod recruitment, while the traditional Ricker and Beverton–Holt models only explained about 10 per cent. Specifically, our approach predicts that a full recovery of the North Sea cod stock might not be expected until the environment becomes more favourable.  相似文献   

9.
The feasibility of using genetic stock identification to analyse seasonal changes in stock compositions of Atlantic salmon catches in the Baltic Sea was examined. The analysis employed seven variable allozyme loci from most of the potentially contributing stocks (16) from Finland and Sweden. Catch samples were collected from Finnish salmon fisheries in the eastern Bothnian Sea during the 1992 fishing season. Simulation studies were used to evaluate the feasibility of identifying Baltic salmon stocks with allozyme data. Special attention was paid to analysing the wild production of salmon stocks. Clear seasonal differences in stock composition were found. The estimates were compared with smolt production and Carlin-tag data. The proportions of the Neva and Oulujoki river stocks could be estimated as individual stocks, whereas the contributions of the remaining stocks were estimated as four composite stock groups. One of the groups consisted of wild stocks from the rivers Kalixälven and Simojoki. Identification of this group, which could be used as an index of wild production in the catches, requires catch sample sizes >300 salmon if <15% error is required.  相似文献   

10.
Righton  David  Metcalfe  Julian 《Hydrobiologia》2002,483(1-3):193-200
Fish behaviour can vary considerably in response to environmental and biological conditions. We used electronic Data Storage Tags (DSTs) to investigate the behaviour of cod in different environments; 74 North Sea cod and 20 Irish Sea cod were tagged and released in late-March 1999. So far, 32 tags (>2000 days of data) have been returned from the North Sea and four (>700 days) from the Irish Sea. The maximum recorded depth of a North Sea cod was 84 m, while Irish Sea cod utilised a depth range of 154 m. Active depth changes were of greater magnitude and rate in Irish Sea cod than North Sea cod. In addition, Irish Sea cod were continually active and made proportionally more active depth changes than North Sea cod, which were very active during migration (March–June) but exhibited little vertical movement during the summer months. To our knowledge, this is the first time that the behaviour patterns of cod from different stocks have been measured simultaneously over extended periods at such a fine temporal scale. In addition to describing considerable inter-stock differences in behaviour, our results suggest that while cod in the Irish Sea remain active and highly mobile throughout the year, North Sea cod reduce their movements during the summer feeding period. Our findings will contribute to the development of more biologically realistic management models used for evaluating the efficacy of fisheries technical measures, such as closed areas.  相似文献   

11.
Some recent scholarship has focused on integrating local and/or traditional knowledge with conventional scientific information in fisheries management to improve the factual foundation of and strengthen support for management decisions. This article compares a sequence of historical and contemporary scientific texts and maps about the migrations and stock structure of cod in the Northern Gulf of St. Lawrence with texts and maps generated by the authors through the collection, aggregation and interpretation of commercial fish harvesters’ ecological knowledge. We find that the relationship between fisheries science and harvesters’ ecological knowledge is dynamic and has changed over time, and that both are ‘situated’ socially and ecologically. Overall, each paints an incomplete picture of cod movements and stock structure but the knowledge of harvesters provides a valuable complement to scientific information, particularly at the local scale, and has the potential to contribute to the identification of local cod stocks that are new to science and management. We end by considering how this case study informs the larger discussion about the challenges and potential benefits of the so-called integration project to bring together science and the ecological knowledge of fish harvesters.
Grant MurrayEmail:
  相似文献   

12.
Over the past 3 decades, North Sea Atlantic cod (Gadus morhua) have exhibited variable length‐at‐age along with declines in spawning stock biomass and timing of maturity. Multiple factors affecting growth and development in fish acted on this economically important stock over the same period including warming waters and an intensive fishery. Here, we employ North Sea cod as a model population, exploring how a physiologically relevant temperature metric (the growing degree‐day, GDD; °C day) can be used to compare year‐classes on a physiologically relevant time‐scale, disentangling influences of climate (thermal history) on observed length‐at‐age trends. We conclude that the trends in North Sea cod length‐at‐age observed during the last three decades can be explained by a combination of temperature‐dependent growth increases and a trend toward earlier maturation, the latter likely induced by the intensive fishing pressure, and possibly evidence of fisheries‐induced evolution.  相似文献   

13.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

14.
15.
A rough guide to population change in exploited fish stocks   总被引:2,自引:0,他引:2  
R. Cook 《Ecology letters》2000,3(5):394-398
Interpreting how populations will change in response to exploitation is essential to the sound management of fish stocks. While deterministic models can be of use in evaluating sustainable fishing rates, the inherent variability of fish populations limits their value. In this paper a probabilistic approach is investigated which avoids having to make strong assumptions about the functional relationship between spawning stock size and the annual number of young fish (recruits) produced. Empirical probability distributions for recruits are derived, conditioned on stock size, and used to indicate likely stock changes under different fishing mortality rates. The method is applied to cod ( Gadus morhua ) in the North Sea to illustrate how population change can be inferred and used by fishery managers to choose fishing mortality rates which are likely to achieve sustainable exploitation.  相似文献   

16.
In order to examine the likely impacts of climate change on fish stocks, it is necessary to couple the output from large‐scale climate models to fisheries population simulations. Using projections of future North Sea surface temperatures for the period 2000–2050 from the Hadley General Circulation Model, we estimate the likely effects of climate change on the North Sea cod population. Output from the model suggests that increasing temperatures will lead to an increased rate of decline in the North Sea cod population compared with simulations that ignore environmental change. Although the simulation developed here is relatively simplistic, we demonstrate that inclusion of environmental factors in population models can markedly alter one's perception of how the population will behave. The development of simulations incorporating environment effects will become increasingly important as the impacts of climate change on the marine ecosystem become more pronounced.  相似文献   

17.
Four different management regimes were identified in small water bodies in Laos: open-access fisheries, both with and without stocking of exotics (mainly Nile tilapia Oreochromis niloticus ); community fisheries with restricted access and regular stocking; and fisheries rented out to corporate entities, based on indigenous stocks only. These regimes represent all possible combinations of the two management measures, access (open/restricted) and stocking of exotic species (no/yes) and a test fishing experiment assessed their effects on stock abundance, richness and diversity. The combination of access restrictions and stocking had a strong positive effect on total standing stocks. Stocks of indigenous fish were significantly increased by access restrictions, while stocking of exotics had no effect on indigenous standing stocks. Community fisheries targeted large sizes of exotic species while reducing the exploitation of smaller size groups, which accounted for much of the indigenous stocks. This suggests that stocking can promote active effort regulation and reduce the exploitation of natural stocks. Data on yields and effort were too limited to allow the use of inferential statistics, but indicated that community fisheries were exploited with much lower effort and gave lower yields than open access fisheries, while providing higher returns to fishing effort. This suggests that active management is effective in increasing standing stocks and the efficiency of exploitation, but does not necessarily increase yields unless optimal management regimes can be identified and implemented by the management institutions. No significant effects on wild stock richness or diversity were detected in the test fishing experiment, but wide confidence limits indicated a low statistical power of the test and therefore no definitive conclusions could be drawn.  相似文献   

18.
The unknown status of inland fish stocks hinders their sustainable management. Therefore, increasing stock status information is important for sustainable inland fisheries. Fisheries reference points were estimated for five exploited fish species (11 stocks) in the Lake Edward system, East Africa, which is one of the most productive inland water systems. The aim was to ascertain the status of the fisheries and establish reference points for effective management. The reference points were based on four linked stock assessment approaches for data-limited fisheries. Estimates showed poor stock status with the stocks defined as either collapsed, recruitment impaired or overfished. However, higher catches could be obtained under sustainable management. Estimates of maximum sustainable yield (MSY) and supporting biomass (Bmsy) are provided for 10 of the stocks as targets for rebuilding plans. The immediate target of management should be rebuilding biomass to Bmsy. Applicable measures include shifting length at first capture to the length that maximizes catch without endangering size structure and biomass, and livelihood diversification out of fisheries.  相似文献   

19.
Engraulis encrasicolus is of great economic importance in the Mediterranean. However, little is known about its stock structure. Otolith shape analysis has been successfully used for fish stock identification. In this study, the stock structure of anchovy caught off the open sea and the coastal area of the Gulf of Tunis, lagoon of Bizerte and Lake of Ichkeul were investigated using otolith shape. Otolith shape was determined by Fourier analysis and then compared among specimens sampled from different areas with forward stepwise canonical discriminant analysis. Significant differences in otolith shape between the open sea and inshore anchovy groups were detected. Otolith shape of anchovy collected in the Lake of Ichkeul was distinct from the other groups. This finding suggests a clear discreteness of the open sea and the continental groups. The data highlighted the potential for using otolith shape analysis for anchovy stock identification, as well as the role of oceanographic features in determining stock separation. These findings will have major implications for anchovy fisheries management in Tunisia. By using a precautionary approach and considering the three areas as separate stocks, fisheries management strategies should be adjusted to achieve optimum sustainable production from each stock and to avoid decreases in genetic variety.  相似文献   

20.
The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号