共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B
Cacciò SM Beck R Lalle M Marinculic A Pozio E 《International journal for parasitology》2008,38(13):1523-1531
Giardia duodenalis is a widespread parasite of mammalian species, including humans. Due to its invariant morphology, investigations of aspects such as host specificity and transmission patterns require the direct genetic characterisation of parasites from faecal samples. We performed a sequence analysis of four genes (ssrRNA, β-giardin, glutamate dehydrogenase and triose phosphate isomerase) of 61 human isolates and 29 animal isolates. The results showed that multilocus genotypes (MLGs) can be readily defined for G. duodenalis isolates of assemblage A but not for assemblage B. Indeed, for assemblage A isolates, there was no evidence of intra-isolate sequence heterogeneity, and congruent genotyping results were obtained at the four genetic loci investigated. Sequence comparison and phylogenetic analysis showed that human-derived and animal-derived MLGs are different, and further indicated the presence of a new sub-assemblage (referred to as “AIII”), which was found exclusively in wild hoofed animals. On the other hand, there were variable levels of intra-isolate sequence heterogeneity (i.e., the presence of two overlapping nucleotide peaks at specific positions in the chromatograms, or “heterogeneous templates”) in assemblage B isolates from humans and animals, and this prevented the unambiguous identification of MLGs. Furthermore, in five human isolates and one non-human primate isolate, the assignment to assemblage B was problematic, given that one of the four markers supported an assignment to assemblage A. These findings raise concerns about the interpretation of genotyping data based on single markers, and indicate the need to understand the mechanisms that are responsible for the differences between G. duodenalis assemblages A and B. 相似文献
5.
Jin-Cheol Shin Alisha Wehdnesday Bernardo Reyes Sang-Hun Kim Suk Kim Hyung-Jin Park Kyoung-Won Seo Kun-Ho Song 《The Korean journal of parasitology》2015,53(4):477-481
Giardia is a major public health concern and considered as reemerging in industrialized countries. The present study investigated the prevalence of giardiosis in 202 sheltered dogs using PCR. The infection rate was 33.2% (67/202); Gyeongsangbuk-do and Daejeon showed 25.7% (39/152, P<0.0001) and 56% (28/50), respectively. The prevalence of infected female dogs (46.7%, P<0.001) was higher than in male dogs (21.8%). A higher prevalence (43.5%, P<0.0001) was observed in mixed breed dogs than purebred (14.1%). Although most of the fecal samples collected were from dogs of ≥1 year of age which showed only 27.4% positive rate, 61.8% (P<0.001) of the total samples collected from young animals (<1 year of age) were positive for G. intestinalis. A significantly higher prevalence in symptomatic dogs (60.8%, P<0.0001) was observed than in asymptomatic dogs (23.8%). Furthermore, the analysis of nucleotide sequences of the samples revealed that G. intestinalis Assemblages A and C were found in the feces of dogs from Gyeongsangbuk-do and Daejeon. Since G. intestinalis Assemblage A has been known to infect humans, our results suggest that dogs can act as an important reservoir of giardiosis in Korea. Hence, hygienic management should be given to prevent possible transmission to humans. 相似文献
6.
7.
The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicyp 1) was isolated. An open reading frame of gicyp 1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicyp 1). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicyp 1, including tryptophan residue essential for the drug binding. The single copy of the gicyp 1 gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis-->trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of 0.5 microM CsA. 相似文献
8.
In molecular epidemiological studies of Giardia intestinalis, an pathogenic intestinal flagellate, due to the presence of allelic sequence heterogeneity (ASH) on the tetraploid genome, the image of haplotype diversity in the field remains uncertain. Here we employed the nine assemblage B positive stool samples, which had previously reported from Kenyan children, for the clonal sequence analysis of multiple gene loci (glutamate dehydrogenase (GDH), triosephosphate isomerase (TPI), and beta-giardin (BG)). The diversified unique assemblage B haplotypes as GDH (n = 67), TPI (n = 84), and BG (n = 62), and the assemblage A haplotypes as GDH (n = 7), TPI (n = 14), and BG (n = 15), which were hidden in the previous direct-sequence results, were detected. Among the assemblage B haplotypes, Bayesian phylogeny revealed multiple statistically significant clusters (9, 7, and 7 clusters for GDH, TPI, and BG, respectively). A part of the clusters (2 for GDH and 1 for BG), which included >4 haplotypes from an individual sample, indicated the presence of co-transmission with multiple strains sharing a recent ancestor. Locus-dependent discrepancies, such as different compositions of derived samples in clusters and different genotyping results for the assemblages, were also observed and considered to be the traces of both intra- and inter-assemblage genetic recombination respectively. Our clonal sequence analysis for giardial population, which applied firstly in Kenya, could reveal the higher rates of ASH far beyond the levels reported in other areas and address the complex population structure. The clonal analysis is indispensable for the molecular field study of G. intestinalis. 相似文献
9.
Siân SE Cox Mark van der Giezen Sarah J Tarr Mark R Crompton Jorge Tovar 《BMC microbiology》2006,6(1):45-16
Background
Giardia intestinalis is a parasitic protozoan and major cause of diarrhoeal disease. Disease transmission is dependent on the ability of the parasite to differentiate back and forth between an intestine-colonising trophozoite and an environmentally-resistant infective cyst. Our current understanding of the intracellular signalling mechanisms that regulate parasite replication and differentiation is limited, yet such information could suggest new methods of disease control. Phosphoinositide-3 kinase (PI3K) signalling pathways have a central involvement in many vital eukaryotic processes, such as regulation of cell growth, intracellular membrane trafficking and cell motility. Here we present evidence for the existence of functional PI3K intracellular signalling pathways in G. intestinalis. 相似文献10.
We developed a series of plasmids that allow C-terminal tagging of any gene in its endogenous locus in Giardia intestinalis, with different epitope tags (triple hemagglutinin [3HA] and triple Myc [3Myc]) and selection markers (puromycin, neomycin, and a newly developed marker, blasticidin). Using these vectors, cyclin B and aurora kinase were tagged, expressed, and localized. 相似文献
11.
Kloc M 《The International journal of developmental biology》2008,52(2-3):115-119
The majority of modern research in cell and developmental biology is based almost exclusively on seven model organisms: mouse, zebra fish, Xenopus laevis frog, Drosophila fly, Caenorabditis elegans worm, Arabidopsis plant and yeast. Although the validity and practicality of these model systems and their impact on scientific progress are undeniable, the combination of goal-oriented science and the use of the model systems introduces, a priori, a dangerous limitation to scientific discovery. Consequently, many astonishing phenomena occurring in non-model organisms are either never studied or, disappear from scientific consciousness. A perfect example is the fate of the important studies by Professor Zygmunt Kraczkiewicz on chromatin diminution in Cecidomyiidae (Diptera) conducted before World War II and continued by his team until early 1990 in the Department of Cytology at Warsaw University in Poland. These light and electron microscopy studies have not been elevated to the molecular level, and although they deserve to be extensively studied and cited by researchers working in the field of soma and germ cell differentiation and specification, they have been, within the past 40 years, nearly completely wiped out of scientific memory. This article presents a short summary of this important research in the historical context of pre- and post-war science at Warsaw University in Poland. 相似文献
12.
13.
The UDP-N-acetylglucosamine pyrophosphorylase in Giardia intestinalis (GiUAP) is one of the five inducible enzymes to synthesize UDP-GalNAc, which is an important precursor for cyst wall synthesis. The recombinant UDP-N-acetylglucosamine pyrophosphorylase (rGiUAP) and its mutants G108A and G210A were expressed and identified by SDS-PAGE, size-exclusion chromatography, Western hybridization, and MALDI mass spectrometry. Sequence comparison with other eukaryotic UAPs has identified three specific motifs. Within these motifs alanine substitution for Gly(108) or Gly(210) dramatically reduced the pyrophosphate synthesis, suggesting these amino acids are catalytic residues. Besides, the rGiUAP was found to have relaxed binding to other uridine-based nucleotides, suggesting the substrate binding pocket is specific to uridine rather than phosphate group(s). Moreover, thermal denaturation analysis showed a significant increase in T(m) for the rGiUAP and G108A upon binding of the substrate Mg-UTP. In contrast, G210A showed a decreased T(m) upon binding of Mg-UTP. These results showed that binding of Mg-UTP increases protein stability of the rGiUAP, and the catalytic residue Gly(210) plays a significant role in stabilizing the protein structure. Such stabilization effect induced by substrate binding might be physiologically important as it favors the production of UDP-GlcNAc and hence the downstream GalNAc, which is crucial to survival of Giardia. These results help to define the essential amino acids for catalysis in the GiUAP and reveal the role of Mg-UTP binding in regulation of protein stability. 相似文献
14.
Giardia intestinalis infections arise primarily from contaminated food or water. Zoonotic transmission is possible, and at least 7 major assemblages including 2 assemblages recovered from humans have been identified. The determination of the genotype of G. intestinalis is useful not only for assessing the correlation of clinical symptoms and genotypes, but also for finding the infection route and its causative agent in epidemiological studies. In this study, methods to identify the genotypes more specifically than the known 2 genotypes recovered from humans have been developed using the intergenic spacer (IGS) region of rDNA. The IGS region contains varying sequences and is thus suitable for comparing isolates once they are classified as the same strain. Genomic DNA was extracted from cysts isolated from the feces of 5 Chinese, 2 Laotians and 2 Koreans infected with G. intestinalis and the trophozoites of WB, K1, and GS strains cultured in the laboratory, respectively. The rDNA containing the IGS region was amplified by PCR and cloned. The nucleotide sequence of the 3' end of IGS region was determined and examined by multiple alignment and phylogenetic analysis. Based on the nucleotide sequence of the IGS region, 13 G. intestinalis isolates were classified to assemblages A and B, and assemblage A was subdivided into A1 and A2. Then, the primers specific to each assemblage were designed, and PCR was performed using those primers. It detected as little as 10 pg of DNA, and the PCR amplified products with the specific length to each assemblage (A1, 176 bp; A2, 261 bp; B, 319 bp) were found. The PCR specific to 3 assemblages of G. intestinalis did not react with other bacteria or protozoans, and it did not react with G. intestinalis isolates obtained from dogs and rats. It was thus confirmed that by applying this PCR method amplifying the IGS region, the detection of G. intestinalis and its genotyping can be determined simultaneously. 相似文献
15.
16.
I Vanni SM Cacciò L van Lith M Lebbad SG Svärd E Pozio F Tosini 《PLoS neglected tropical diseases》2012,6(8):e1776
The flagellated protozoan Giardia duodenalis is a common gastrointestinal parasite of mammals, including humans. Molecular characterizations have shown the existence of eight genetic groups (or assemblages) in the G. duodenalis species complex. Human infections are caused by assemblages A and B, which infect other mammals as well. Whether transmission routes, animal reservoirs and associations with specific symptoms differ for assemblage A and assemblage B is not clear. Furthermore, the occurrence and clinical significance of mixed (A+B) infections is also poorly understood. To date, the majority of PCR assays has been developed to identify all G. duodenalis assemblages based on the use of primers that bind to conserved regions, yet a reliable identification of specific assemblages is better achieved by ad hoc methods. The aim of this work was to design simple PCR assays that, based on the use of assemblage-specific primers, produce diagnostic bands of different lengths for assemblage A and B. We first generated novel sequence information from assemblage B, identified homologous sequences in the assemblage A genome, and designed primers at six independent loci. Experiments performed on DNA extracted from axenic cultures showed that two of the six assays can detect the equivalent of a single cyst and are not negatively influenced by disproportions between DNA of each assemblage, at least up to a 9∶1 ratio. Further experiments on DNAs extracted from feces showed that the two assays can detect both assemblages in single tube reactions with excellent reliability. Finally, the robustness of these assays was demonstrated by testing a large collection of human isolates previously typed by multi-locus genotyping. 相似文献
17.
Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis 下载免费PDF全文
Dawson SC Sagolla MS Mancuso JJ Woessner DJ House SA Fritz-Laylin L Cande WZ 《Eukaryotic cell》2007,6(12):2354-2364
Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle. 相似文献
18.
Pituch H Obuch-Woszczatyński P Wultańska D Meisel-Mikołajczyk F Łuczak M 《Anaerobe》2005,11(4):197-199
The drug of choice used to treat Clostridium difficile-associated diarroea (CDAD) are metronidazole and vancomycin. Information about emergence of antimicrobial resistance among C. difficile strains to metronidazole and intermediate resistance to vancomycin in some countries are alarming. This study was performed to determine the susceptibility to metronidazole and vancomycin of 193 C. difficile strains isolated in our diagnostic laboratory between year 1998 and 2003 from patients adults and children suffering from CDAD. Among these strains, 142 produced toxin A and B (TcdA(+)TcdB(+)), 43 only B (TcdA(-)TcdB(+)) and 8 were nontoxigenic. We have not observed any differences in susceptibility to metronidazole and vancomycin between all C. difficile strains under investigation (toxinogenic and non-toxinogenic). Resistance to metronidazole and vancomycin was not observed. 相似文献
19.
Johan Ankarklev Oscar Franzén Dimitra Peirasmaki Jon Jerlstr?m-Hultqvist Marianne Lebbad Jan Andersson Bj?rn Andersson Staffan G. Sv?rd 《BMC genomics》2015,16(1)
Background
The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates.Results
Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by ~100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25–0.35 %, which is 25–30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites.Conclusions
Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1893-6) contains supplementary material, which is available to authorized users. 相似文献20.
Small sense and antisense RNAs derived from a telomeric retroposon family in Giardia intestinalis 总被引:2,自引:0,他引:2 下载免费PDF全文
Sequencing of a library of small RNAs from Giardia intestinalis identified a novel class of small sense and antisense RNAs homologous to the retroposon family GilT/Genie1 that is located at certain telomeres. These small RNAs may contribute to silencing GilT expression via the RNA interference pathway. 相似文献